INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRODINGER-MAXWELL EQUATIONS

被引:17
作者
Xu, Jiafa [1 ]
Wei, Zhongli [2 ]
O'Regan, Donal [3 ]
Cui, Yujun [4 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
[2] Shandong Jianzhu Univ, Dept Math, Jinan 250101, Shandong, Peoples R China
[3] Natl Univ Ireland, Sch Math Stat & Appl Math, Galway, Ireland
[4] Shandong Univ Sci & Technol, State Key Lab Min Disaster Prevent & Control Cofo, Qingdao 266590, Shandong, Peoples R China
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2019年 / 9卷 / 03期
基金
中国国家自然科学基金;
关键词
Fractional Laplacian; Schrodinger-Maxwell equations; infinitely many solutions; BOUNDARY-VALUE-PROBLEMS; KLEIN-GORDON-MAXWELL; BLOW-UP SOLUTIONS; NONTRIVIAL SOLUTIONS; POSITIVE SOLUTIONS; KIRCHHOFF TYPE; EXISTENCE; UNIQUENESS; SYSTEM;
D O I
10.11948/2156-907X.20190022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper using fountain theorems we study the existence of infinitely many solutions for fractional Schrodinger-Maxwell equations {(-Delta)(alpha)u + lambda V(x)u + phi u = f(x,u) - mu g(x)vertical bar u vertical bar(q-2)u, in R-3, (-Delta)(alpha)phi = K(alpha)u(2), in R-3, where lambda, mu > 0 are two parameters, alpha is an element of (0,1], K-alpha = pi(-alpha)Gamma(alpha)/pi(-(3-2 alpha)/2)Gamma((3-2 alpha)/2) and (-Delta)(alpha) is the fractional Laplacian. Under appropriate assumptions on f and g we obtain an existence theorem for this system.
引用
收藏
页码:1165 / 1182
页数:18
相关论文
共 52 条
[1]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[2]   On the existence of blow up solutions for a class of fractional differential equations [J].
Bai, Zhanbing ;
Chen, YangQuan ;
Lian, Hairong ;
Sun, Sujing .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) :1175-1187
[3]   Solvability of fractional three-point boundary value problems with nonlinear growth [J].
Bai, Zhanbing ;
Zhang, Yinghan .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :1719-1725
[4]  
Benci V., 1998, Topol. Methods Nonlinear Anal., V11, P283, DOI DOI 10.12775/TMNA.1998.019
[5]   Ground state solutions of asymptotically linear fractional Schrodinger equations [J].
Chang, Xiaojun .
JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
[6]   New Existence of Solutions for the Fractional p-Laplacian Equations with Sign-Changing Potential and Nonlinearity [J].
Cheng, Bitao ;
Tang, Xianhua .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (05) :3373-3387
[7]   Uniqueness of solution for boundary value problems for fractional differential equations [J].
Cui, Yujun .
APPLIED MATHEMATICS LETTERS, 2016, 51 :48-54
[8]   Solitary waves for nonlinear Klein-Gordon-Maxwell and Schrodinger-Maxwell equations [J].
D'Aprile, T ;
Mugnai, D .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2004, 134 :893-906
[9]  
Debnath L., 2003, Int. J. Math. Math. Sci, V2003, P30
[10]   Positive solutions of the nonlinear Schrodinger equation with the fractional Laplacian [J].
Felmer, Patricio ;
Quaas, Alexander ;
Tan, Jinggang .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2012, 142 (06) :1237-1262