Improved understanding of physics processes in pedestal structure, leading to improved predictive capability for ITER

被引:57
作者
Groebner, R. J. [1 ]
Chang, C. S. [2 ]
Hughes, J. W. [3 ]
Maingi, R. [2 ]
Snyder, P. B. [1 ]
Xu, X. Q. [4 ]
Boedo, J. A. [5 ]
Boyle, D. P. [2 ]
Callen, J. D. [6 ]
Canik, J. M. [7 ]
Cziegler, I. [5 ]
Davis, E. M. [3 ]
Diallo, A. [2 ]
Diamond, P. H. [5 ]
Elder, J. D. [8 ]
Eldon, D. P. [5 ]
Ernst, D. R. [3 ]
Fulton, D. P. [9 ]
Landreman, M. [3 ]
Leonard, A. W. [1 ]
Lore, J. D. [7 ]
Osborne, T. H. [1 ]
Pankin, A. Y. [10 ]
Parker, S. E. [11 ]
Rhodes, T. L. [12 ,13 ]
Smith, S. P. [1 ]
Sontag, A. C. [7 ]
Stacey, W. M. [14 ]
Walk, J. [3 ]
Wan, W. [11 ]
Wang, E. H. -J. [4 ]
Watkins, J. G. [15 ]
White, A. E. [3 ]
Whyte, D. G. [3 ]
Yan, Z. [6 ]
Belli, E. A. [1 ]
Bray, B. D. [1 ]
Candy, J. [1 ]
Churchill, R. M. [3 ]
Deterly, T. M. [1 ]
Doyle, E. J. [12 ,13 ]
Fenstermacher, M. E. [4 ]
Ferraro, N. M. [1 ]
Hubbard, A. E. [3 ]
Joseph, I. [4 ]
Kinsey, J. E. [1 ]
LaBombard, B. [3 ]
Lasnier, C. J. [4 ]
Lin, Z. [9 ]
Lipschultz, B. L. [3 ]
机构
[1] Gen Atom, San Diego, CA 92186 USA
[2] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[3] MIT, Cambridge, MA 02139 USA
[4] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[5] Univ Calif San Diego, La Jolla, CA 92093 USA
[6] Univ Wisconsin, Coll Engn, Madison, WI 53706 USA
[7] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[8] Univ Toronto, Inst Aerosp Studies, Toronto, ON M3H 576, Canada
[9] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92616 USA
[10] Tech X, Boulder, CO 80303 USA
[11] Univ Colorado Boulder, Dept Phys, Boulder, CO 80309 USA
[12] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
[13] Univ Calif Los Angeles, PSTI, Los Angeles, CA 90095 USA
[14] Georgia Inst Technol, Atlanta, GA 30332 USA
[15] Sandia Natl Labs, Albuquerque, NM 87185 USA
基金
加拿大自然科学与工程研究理事会;
关键词
BOOTSTRAP-CURRENT; ARBITRARY COLLISIONALITY; TRANSPORT MODELS; DIII-D; CONFINEMENT; TEMPERATURE; INSTABILITY; EQUILIBRIA; PROFILES; DENSITY;
D O I
10.1088/0029-5515/53/9/093024
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Joint experiment/theory/modelling research has led to increased confidence in predictions of the pedestal height in ITER. This work was performed as part of a US Department of Energy Joint Research Target in FY11 to identify physics processes that control the H-mode pedestal structure. The study included experiments on C-Mod, DIII-D and NSTX as well as interpretation of experimental data with theory-based modelling codes. This work provides increased confidence in the ability of models for peeling-ballooning stability, bootstrap current, pedestal width and pedestal height scaling to make correct predictions, with some areas needing further work also being identified. A model for pedestal pressure height has made good predictions in existing machines for a range in pressure of a factor of 20. This provides a solid basis for predicting the maximum pedestal pressure height in ITER, which is found to be an extrapolation of a factor of 3 beyond the existing data set. Models were studied for a number of processes that are proposed to play a role in the pedestal n(e) and T-e profiles. These processes include neoclassical transport, paleoclassical transport, electron temperature gradient turbulence and neutral fuelling. All of these processes may be important, with the importance being dependent on the plasma regime. Studies with several electromagnetic gyrokinetic codes show that the gradients in and on top of the pedestal can drive a number of instabilities.
引用
收藏
页数:19
相关论文
共 85 条
[1]  
[Anonymous], P 15 IAEA FUS EN C P
[2]   Comparison of poloidal velocity measurements to neoclassical theory on the National Spherical Torus Experimenta) [J].
Bell, R. E. ;
Andre, R. ;
Kaye, S. M. ;
Kolesnikov, R. A. ;
LeBlanc, B. P. ;
Rewoldt, G. ;
Wang, W. X. ;
Sabbagh, S. A. .
PHYSICS OF PLASMAS, 2010, 17 (08)
[3]   Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
[4]   The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX [J].
Boyle, D. P. ;
Maingi, R. ;
Snyder, P. B. ;
Manickam, J. ;
Osborne, T. H. ;
Bell, R. E. ;
LeBlanc, B. P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (10)
[5]   Inter-ELM behaviour of the electron density and temperature pedestal in ASDEX Upgrade [J].
Burckhart, A. ;
Wolfrum, E. ;
Fischer, R. ;
Lackner, K. ;
Zohm, H. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2010, 52 (10)
[6]   Pedestal Structure Model [J].
Callen, J. D. ;
Canik, J. M. ;
Smith, S. P. .
PHYSICAL REVIEW LETTERS, 2012, 108 (24)
[7]  
Callen J.D., 2010, U WISCONSIN REPORTS
[8]   Paleoclassical electron heat transport [J].
Callen, JD .
NUCLEAR FUSION, 2005, 45 (09) :1120-1130
[9]   An Eulerian gyrokinetic-Maxwell solver [J].
Candy, J ;
Waltz, RE .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :545-581
[10]   A unified method for operator evaluation in local Grad-Shafranov plasma equilibria [J].
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (10)