Modified extragradient-like algorithms with new stepsizes for variational inequalities

被引:54
作者
Dang Van Hieu [1 ]
Pham Ky Anh [2 ]
Le Dung Muu [3 ]
机构
[1] Ton Duc Thang Univ, Appl Anal Res Grp, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Vietnam Natl Univ, Dept Math, 334 Nguyen Trai, Hanoi, Vietnam
[3] Thang Long Univ, TIMAS, Hanoi, Vietnam
关键词
Variational inequality; Monotone operator; Extragradient method; Subgradient extragradient method; Projection method;
D O I
10.1007/s10589-019-00093-x
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The paper concerns with an algorithm for approximating solutions of a variational inequality problem involving a Lipschitz continuous and monotone operator in a Hilbert space. The algorithm uses a new stepsize rule which does not depend on the Lipschitz constant and without any linesearch procedure. The resulting algorithm only requires to compute a projection on feasible set and a value of operator over each iteration. The convergence and the convergence rate of the algorithm are established. Some experiments are performed to show the numerical behavior of the proposed algorithm and also to compare its performance with those of others.
引用
收藏
页码:913 / 932
页数:20
相关论文
共 32 条
[1]  
[Anonymous], 1980, Mat. Zametki
[2]  
Antipin A. S., 1976, Ekonom. i Mat. Metody, V12, P1164
[3]   The Subgradient Extragradient Method for Solving Variational Inequalities in Hilbert Space [J].
Censor, Y. ;
Gibali, A. ;
Reich, S. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2011, 148 (02) :318-335
[4]   Strong convergence of subgradient extragradient methods for the variational inequality problem in Hilbert space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION METHODS & SOFTWARE, 2011, 26 (4-5) :827-845
[5]   Extensions of Korpelevich's extragradient method for the variational inequality problem in Euclidean space [J].
Censor, Yair ;
Gibali, Aviv ;
Reich, Simeon .
OPTIMIZATION, 2012, 61 (09) :1119-1132
[6]   New extragradient-like algorithms for strongly pseudomonotone variational inequalities [J].
Dang Van Hieu ;
Duong Viet Thong .
JOURNAL OF GLOBAL OPTIMIZATION, 2018, 70 (02) :385-399
[7]   Weak and strong convergence theorems for variational inequality problems [J].
Duong Viet Thong ;
Dang Van Hieu .
NUMERICAL ALGORITHMS, 2018, 78 (04) :1045-1060
[8]  
Facchinei Francisco, 2007, Springer Series in Operations Research
[9]  
Fichera G., 1964, Accademia nazionale dei Lincei, VIa 7, P91
[10]  
Fichera G., 1963, Atti Accad. Naz. Lincei, VIII. Ser., Rend., Cl. Sci. Fis. Mat. Nat., V34, P138