An Unknown Input Fractional-Order Observer Design for Fractional-Order Glucose-Insulin System

被引:0
作者
N'Doye, Ibrahima [1 ]
Voos, Holger [1 ]
Darouach, Mohamed [2 ]
Schneider, Jochen G. [3 ]
Knauf, Nicolas [4 ]
机构
[1] Univ Luxembourg, Fac Sci Technol & Commun, 6 Rue Richard Coudenhove Kalergi, L-1359 Luxembourg, Luxembourg
[2] Univ Lorraine, CRAN UMR 7039, CNRS, F-54400 Cosnes Et Romain, France
[3] Univ Luxembourg, Luxembourg Ctr Syst Biomed, L-4362 Belval, Luxembourg
[4] Ctr Hosp Nord, L-9080 Ettelbruck, Luxembourg
来源
2012 IEEE EMBS CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES) | 2012年
关键词
Fractional calculus; fractional-order minimal model of glucose-insulin; diabetes; unknown input observer; glucose disturbance; numerical simulations; MODEL;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we introduce fractional-order derivatives into a generalized minimal model of glucose-insulin. A fractional-order state observer is designed for estimating the structure of a blood glucose-insulin with glucose rate disturbance to show the complete dynamics of the glucose-insulin system where the fractional-order alpha belonging to 0 < alpha < 1. A nonlinear fractional-order unknown input observer strategy is used where the glucose rate disturbance is considered as an unknown input to the perspective dynamical system. The developed method provides the observer estimation algorithm for a glucose-insulin system with unknown time-varying glucose rate disturbance. The stability analysis of the fractional-order error system is completed and showed that the fractional-order observer design is as stable as their integer order counterpart and guarantees the best convergence of the estimation error. Finally, numerical simulations are given to illustrate the effectiveness of the proposed method.
引用
收藏
页数:6
相关论文
共 30 条
[1]   On fractional order differential equations model for nonlocal epidemics [J].
Ahmed, E. ;
Elgazzar, A. S. .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 379 (02) :607-614
[2]   THE FRACTIONAL-ORDER DYNAMICS OF BRAIN-STEM VESTIBULOOCULOMOTOR NEURONS [J].
ANASTASIO, TJ .
BIOLOGICAL CYBERNETICS, 1994, 72 (01) :69-79
[3]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[4]  
[Anonymous], 2001, APPL FRACTIONAL CALC
[5]  
[Anonymous], OPTIMAL CONTROL APPL
[6]  
[Anonymous], P IEEE C DEC CONTR S
[7]   An observer for a class of nonlinear systems with time varying observation delay [J].
Cacace, F. ;
Germani, A. ;
Manes, C. .
SYSTEMS & CONTROL LETTERS, 2010, 59 (05) :305-312
[8]   Fractional order disturbance observer for robust vibration suppression [J].
Chen, YQ ;
Vinagre, BM ;
Podlubny, I .
NONLINEAR DYNAMICS, 2004, 38 (1-4) :355-367
[9]  
Cole K. S., 1993, P COLD SPRING HARB S
[10]  
Dadras S., 2011, P ASME 2011 INT DES