The GUS-property of second-order cone linear complementarity problems

被引:19
|
作者
Yang, Wei Hong [1 ]
Yuan, Xiaoming [2 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] Hong Kong Baptist Univ, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
Second-order cone; Linear complementarity problem; Globally uniquely solvable property; P-PROPERTIES; TRANSFORMATIONS;
D O I
10.1007/s10107-012-0523-1
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The globally uniquely solvable (GUS) property of the linear transformation of the linear complementarity problems over symmetric cones has been studied recently by Gowda et al. via the approach of Euclidean Jordan algebra. In this paper, we contribute a new approach to characterizing the GUS property of the linear transformation of the second-order cone linear complementarity problems (SOCLCP) via some basic linear algebra properties of the involved matrix of SOCLCP. Some more concrete and checkable sufficient and necessary conditions for the GUS property are thus derived.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 50 条
  • [1] The GUS-property of second-order cone linear complementarity problems
    Wei Hong Yang
    Xiaoming Yuan
    Mathematical Programming, 2013, 141 : 295 - 317
  • [2] GUS-property for Lorentz cone linear complementarity problems on Hilbert spaces
    Miao XinHe
    Huang ZhengHai
    SCIENCE CHINA-MATHEMATICS, 2011, 54 (06) : 1259 - 1268
  • [3] AN EFFICIENT ALGORITHM FOR SECOND-ORDER CONE LINEAR COMPLEMENTARITY PROBLEMS
    Zhang, Lei-Hong
    Yang, Wei Hong
    MATHEMATICS OF COMPUTATION, 2014, 83 (288) : 1701 - 1726
  • [4] Characterization of Q-property for cone automorphisms in second-order cone linear complementarity problems
    Mondal, Chiranjit
    Balaji, R.
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6155 - 6175
  • [5] The modulus-based matrix splitting iteration methods for second-order cone linear complementarity problems
    Ke, Yi-Fen
    Ma, Chang-Feng
    Zhang, Huai
    NUMERICAL ALGORITHMS, 2018, 79 (04) : 1283 - 1303
  • [6] On matrix characterizations for P-property of the linear transformation in second-order cone linear complementarity problems
    Miao, Xin-He
    Chen, Jein-Shan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 613 (613) : 271 - 294
  • [7] A power penalty method for second-order cone linear complementarity problems
    Hao, Zijun
    Wan, Zhongping
    Chi, Xiaoni
    OPERATIONS RESEARCH LETTERS, 2015, 43 (02) : 137 - 142
  • [8] An approximate lower order penalty approach for solving second-order cone linear complementarity problems
    Hao, Zijun
    Nguyen, Chieu Thanh
    Chen, Jein-Shan
    JOURNAL OF GLOBAL OPTIMIZATION, 2022, 83 (04) : 671 - 697
  • [9] An approximate lower order penalty approach for solving second-order cone linear complementarity problems
    Zijun Hao
    Chieu Thanh Nguyen
    Jein-Shan Chen
    Journal of Global Optimization, 2022, 83 : 671 - 697
  • [10] SOR-Like Iteration Methods for Second-Order Cone Linear Complementarity Problems
    Li, Zhizhi
    Ke, Yifen
    Zhang, Huai
    Chu, Risheng
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2020, 10 (02) : 295 - 315