A CMOS silicon spin qubit

被引:431
作者
Maurand, R. [1 ,2 ]
Jehl, X. [1 ,2 ]
Kotekar-Patil, D. [1 ,2 ]
Corna, A. [1 ,2 ]
Bohuslavskyi, H. [1 ,2 ]
Lavieville, R. [1 ,3 ]
Hutin, L. [1 ,3 ]
Barraud, S. [1 ,3 ]
Vinet, M. [1 ,3 ]
Sanquer, M. [1 ,2 ]
De Franceschi, S. [1 ,2 ]
机构
[1] Univ Grenoble Alpes, F-38000 Grenoble, France
[2] CEA, INAC PHELIQS, F-38000 Grenoble, France
[3] CEA, LETI, MINATEC Campus, F-38054 Grenoble, France
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
欧洲研究理事会;
关键词
QUANTUM-DOT; HOLE SPIN; NANOWIRE; BLOCKADE; GATE;
D O I
10.1038/ncomms13575
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Silicon, the main constituent of microprocessor chips, is emerging as a promising material for the realization of future quantum processors. Leveraging its well-established complementary metal-oxide-semiconductor (CMOS) technology would be a clear asset to the development of scalable quantum computing architectures and to their co-integration with classical control hardware. Here we report a silicon quantum bit (qubit) device made with an industry-standard fabrication process. The device consists of a two-gate, p-type transistor with an undoped channel. At low temperature, the first gate defines a quantum dot encoding a hole spin qubit, the second one a quantum dot used for the qubit read-out. All electrical, two-axis control of the spin qubit is achieved by applying a phase-tunable microwave modulation to the first gate. The demonstrated qubit functionality in a basic transistor-like device constitutes a promising step towards the elaboration of scalable spin qubit geometries in a readily exploitable CMOS platform.
引用
收藏
页数:6
相关论文
共 34 条
[1]   Performance of Omega-Shaped-Gate Silicon Nanowire MOSFET With Diameter Down to 8 nm [J].
Barraud, S. ;
Coquand, R. ;
Casse, M. ;
Koyama, M. ;
Hartmann, J. -M. ;
Maffini-Alvaro, V. ;
Comboroure, C. ;
Vizioz, C. ;
Aussenac, F. ;
Faynot, O. ;
Poiroux, T. .
IEEE ELECTRON DEVICE LETTERS, 2012, 33 (11) :1526-1528
[2]   Dispersively Detected Pauli Spin-Blockade in a Silicon Nanowire Field-Effect Transistor [J].
Betz, A. C. ;
Wacquez, R. ;
Vinet, M. ;
Jehl, X. ;
Saraiva, A. L. ;
Sanquer, M. ;
Ferguson, A. J. ;
Gonzalez-Zalba, M. F. .
NANO LETTERS, 2015, 15 (07) :4622-4627
[3]   Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs [J].
Bluhm, Hendrik ;
Foletti, Sandra ;
Neder, Izhar ;
Rudner, Mark ;
Mahalu, Diana ;
Umansky, Vladimir ;
Yacoby, Amir .
NATURE PHYSICS, 2011, 7 (02) :109-113
[4]  
Bravyi S. B., 1998, PREPRINT
[5]   A Coherent Single-Hole Spin in a Semiconductor [J].
Brunner, Daniel ;
Gerardot, Brian D. ;
Dalgarno, Paul A. ;
Wuest, Gunter ;
Karrai, Khaled ;
Stoltz, Nick G. ;
Petroff, Pierre M. ;
Warburton, Richard J. .
SCIENCE, 2009, 325 (5936) :70-72
[6]   Pauli spin blockade in the presence of strong spin-orbit coupling [J].
Danon, J. ;
Nazarov, Yu. V. .
PHYSICAL REVIEW B, 2009, 80 (04)
[7]  
De Greve K, 2011, NAT PHYS, V7, P872, DOI [10.1038/nphys2078, 10.1038/NPHYS2078]
[8]   Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath [J].
de Lange, G. ;
Wang, Z. H. ;
Riste, D. ;
Dobrovitski, V. V. ;
Hanson, R. .
SCIENCE, 2010, 330 (6000) :60-63
[9]   Topological quantum memory [J].
Dennis, E ;
Kitaev, A ;
Landahl, A ;
Preskill, J .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) :4452-4505
[10]   Spins in few-electron quantum dots [J].
Hanson, R. ;
Kouwenhoven, L. P. ;
Petta, J. R. ;
Tarucha, S. ;
Vandersypen, L. M. K. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (04) :1217-1265