A general methodology for n-dimensional trajectory clustering

被引:24
作者
Bermingham, Luke [1 ]
Lee, Ickjai [1 ]
机构
[1] James Cook Univ, Coll Business Law & Governance, Informat Technol, Cairns, Qld 4870, Australia
关键词
Trajectory clustering; High dimensional clustering; Trajectory data mining;
D O I
10.1016/j.eswa.2015.06.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Trajectory data is rich in dimensionality, often containing valuable patterns in more than just the spatial and temporal dimensions. Yet existing trajectory clustering techniques only consider a fixed number of dimensions. We propose a general trajectory clustering methodology which can detect clusters using any arbitrary number of the n-dimensions available in the data. To exemplify our methodology we apply it an existing trajectory clustering approach, TRACLUS, to create the so-called, ND-TRACLUS. Furthermore, in order to better describe the trajectory clusters uncovered when clustering arbitrary dimensions we also introduce, Retraspam, a novel algorithm for n-dimensional representative trajectory formulation. We qualitatively and quantitatively evaluate both our methodology and Retraspam using two real world datasets and find valuable, previously unknown higher dimensional trajectory patterns. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:7573 / 7581
页数:9
相关论文
共 17 条
[1]  
[Anonymous], 2007, P 2007 ACM SIGMOD IN
[2]   The Priority R-Tree: A Practically Efficient and Worst-Case Optimal R-Tree [J].
Arge, Lars ;
De Berg, Mark ;
Haverkort, Herman ;
Yi, Ke .
ACM TRANSACTIONS ON ALGORITHMS, 2008, 4 (01)
[3]  
Beyer K, 1999, LECT NOTES COMPUT SC, V1540, P217
[4]   Dealing with trajectory streams by clustering and mathematical transforms [J].
Costa, Gianni ;
Manco, Giuseppe ;
Masciari, Elio .
JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2014, 42 (01) :155-177
[5]  
Deng Z. L., 2014, CLUSTER COMPUT, P1
[6]   Incremental clustering of mobile objects [J].
Elnekave, Sigal ;
Last, Mark ;
Maitnon, Oded .
2007 IEEE 23RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOP, VOLS 1-2, 2007, :585-+
[7]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[8]  
Giannotti F, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P330
[9]   An Incremental DPMM-Based Method for Trajectory Clustering, Modeling, and Retrieval [J].
Hu, Weiming ;
Li, Xi ;
Tian, Guodong ;
Maybank, Stephen ;
Zhang, Zhongfei .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (05) :1051-1065
[10]   Continuous clustering of moving objects [J].
Jensen, Christian S. ;
Lin, Dan ;
Ooi, Beng Chin .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2007, 19 (09) :1161-1174