QUANTUM TOMOGRAPHY OF TIME-DEPENDENT NONLINEAR HAMILTONIAN SYSTEMS

被引:2
|
作者
Man'ko, V., I [1 ,2 ]
Markovich, L. A. [3 ,4 ,5 ]
机构
[1] Russian Acad Sci, PN Lebedev Phys Inst, Leninskii Prospect 53, Moscow 119991, Russia
[2] Moscow Inst Phys & Technol, Inst Per 9, Dolgoprudnyi 141700, Moscow Region, Russia
[3] Russian Acad Sci, Inst Control Sci, Profsoyuznaya 65, Moscow 117997, Russia
[4] Inst Informat Transmiss Problems, Bolshoy Karetny Per 19,Build 1, Moscow 127051, Russia
[5] Russian Quantum Ctr, Correlated Quantum Syst Grp, Novaya St 100A, Moscow 143025, Russia
关键词
quantum tomography; nonlinear Hamiltonian; oscillator; coherent states; CHARGED-PARTICLE; COHERENT STATES; SYMPLECTIC TOMOGRAPHY; CURRENT SITUATION; INVARIANTS; DYNAMICS;
D O I
10.1016/S0034-4877(19)30026-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We discuss several models of nonlinear oscillators within the framework of a tomographic probability representation of quantum mechanics. Using the connection between the Green's function and the integrals of motion of quantum systems with the time-dependent Schrodinger equation with variable nonlinear Hamiltonians, the explicit tomograms for such systems are found. The case of quadratic and quasi-quadratic Hamiltonians are studied in detail.
引用
收藏
页码:87 / 106
页数:20
相关论文
共 50 条
  • [1] Time-dependent linear Hamiltonian systems and quantum mechanics
    Rezende, J
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (02) : 117 - 127
  • [2] Time evolution of quantum systems with time-dependent Hamiltonian and the invariant Hermitian operator
    Lai, YZ
    Liang, JQ
    MullerKirsten, HJW
    Zhou, JG
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (08): : 1773 - 1783
  • [3] Invariants for time-dependent Hamiltonian systems
    Struckmeier, J
    Riedel, C
    PHYSICAL REVIEW E, 2001, 64 (02):
  • [4] TIME-DEPENDENT SUPERINTEGRABLE HAMILTONIAN SYSTEMS
    Sardanashvily, G.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2012, 9 (08)
  • [5] Invariants for time-dependent Hamiltonian systems
    Struckmeier, J.
    Riedel, C.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II): : 265031 - 265039
  • [6] Numerical quantum propagation with time-dependent Hamiltonian
    Zhu, WS
    Zhao, XS
    JOURNAL OF CHEMICAL PHYSICS, 1996, 105 (21): : 9536 - 9545
  • [7] Quantum representation of a time-dependent quadratic Hamiltonian in a time-dependent phase space frame
    Leyvraz, F
    Manko, VI
    Seligman, TH
    PHYSICS LETTERS A, 1996, 210 (1-2) : 26 - 32
  • [8] CHAOTIC SCATTERING IN TIME-DEPENDENT HAMILTONIAN SYSTEMS
    Lai, Ying-Cheng
    Grebogi, Celso
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1991, 1 (03): : 667 - 679
  • [9] Time-dependent general quantum quadratic Hamiltonian system
    Yeon, Kyu Hwang
    Um, Chung In
    George, Thomas F.
    Physical Review A - Atomic, Molecular, and Optical Physics, 2003, 68 (05): : 521081 - 521089
  • [10] Time-dependent general quantum quadratic Hamiltonian system
    Yeon, KH
    Um, CI
    George, TF
    PHYSICAL REVIEW A, 2003, 68 (05):