Extending radial point interpolating meshless methods to the elasto-plastic analysis of aluminium alloys

被引:26
作者
Farahani, Behzad V. [1 ,2 ]
Belinha, J. [2 ,3 ]
Amaral, Rui [2 ]
Tavares, Paulo J. [2 ]
Moreira, Pedro M. P. G. [2 ]
机构
[1] Univ Porto, Fac Engn, FEUP, Rua Dr Roberto Frias, P-4200465 Porto, Portugal
[2] Inst Mech Engn & Ind Management, INEGI, Rua Dr Roberto Frias 400, P-4200465 Porto, Portugal
[3] Polytech Porto, Sch Engn, Dept Mech Engn, ISEP, Porto, Portugal
关键词
Elasto-plasticity; Meshless method; RPIM; NNRPIM; FEM; OPTIMAL SHAPE-PARAMETERS; KERNEL PARTICLE METHODS; FINITE-ELEMENT; PLATES; PROPAGATION;
D O I
10.1016/j.enganabound.2018.02.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study performs an elasto-plastic numerical analysis of an aluminium alloy using two efficient meshless methods. The obtained numerical solutions are validated using experimental results due to the lack of a suitable elasto-plastic analytical solution. Thus, an experimental test was performed in order to obtain the force/displacement curve and the corresponding mechanical properties by means of Digital Image Correlation (DIC). In this work, two advanced discretization techniques, the Radial Point Interpolation Meshless Method (RPIM) and Natural Neighbour Radial Point Interpolation Meshless Method (NNRPIM), were extended to elasto-plasticity. In order to assess the performance of the numerical methods, the problem was additionally solved with the Finite Element Method (FEM) formulation in ABAQUS(C). The success of the obtained numerical results validates the experimental solution contributing to accomplish the study objectives. Additionally, meshless methods produce accurate results compared to the experimental solution and FEM, proving that the presented methodology is feasible and robust. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:101 / 117
页数:17
相关论文
共 68 条
[1]  
[Anonymous], 1991, ILR, V1, p99a
[2]   A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics [J].
Atluri, SN ;
Zhu, T .
COMPUTATIONAL MECHANICS, 1998, 22 (02) :117-127
[3]   Crack path prediction using the natural neighbour radial point interpolation method [J].
Azevedo, J. M. C. ;
Belinha, J. ;
Dinis, L. M. J. S. ;
Natal Jorge, R. M. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 59 :144-158
[4]  
Barry W, 1999, INT J NUMER METH ENG, V46, P671, DOI 10.1002/(SICI)1097-0207(19991020)46:5<671::AID-NME650>3.0.CO
[5]  
2-9
[6]  
Bathe K.J., 1996, Finite Element Procedures
[7]   Nonlinear analysis of plates and laminates using the element free Galerkin method [J].
Belinha, J. ;
Dinis, L. M. J. S. .
COMPOSITE STRUCTURES, 2007, 78 (03) :337-350
[8]   Elasto-plastic analysis of plates by the element free Galerkin method [J].
Belinha, J. ;
Dinis, L. M. J. S. .
ENGINEERING COMPUTATIONS, 2006, 23 (5-6) :525-551
[9]   The Natural Neighbor Radial Point Interpolation Method Extended to the Crack Growth Simulation [J].
Belinha, J. ;
Azevedo, J. M. C. ;
Dinis, L. M. J. S. ;
Jorge, R. M. Natal .
INTERNATIONAL JOURNAL OF APPLIED MECHANICS, 2016, 8 (01)
[10]   Analysis of thick plates by the natural radial element method [J].
Belinha, J. ;
Dinis, L. M. J. S. ;
Natal Jorge, R. M. .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 76 :33-48