Optimization of Isopolar Microtubule Arrays

被引:16
作者
Agayan, Rodney R. [1 ]
Tucker, Robert [2 ]
Nitta, Takahiro [1 ,3 ]
Ruhnow, Felix [4 ]
Walter, Wilhelm J. [4 ]
Diez, Stefan [4 ,5 ]
Hess, Henry [1 ,2 ]
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[3] Gifu Univ, Dept Math & Design Engn, Gifu 5011193, Japan
[4] Tech Univ Dresden, B CUBE Ctr Mol Bioengn, D-01307 Dresden, Germany
[5] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
关键词
MOTOR PROTEINS; UNIDIRECTIONAL TRANSPORT; NANOSCALE TRANSPORT; KINESIN; DRIVEN; ALIGNMENT; CARGO; TRANSLOCATION; EFFICIENCY; MACHINES;
D O I
10.1021/la303792v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Isopolar arrays of aligned cytoskeletal filaments are components in a number of designs of hybrid nanodevices incorporating biomolecular motors. For example, a combination of filament arrays and motor arrays can form an actuator or a molecular engine resembling an artificial muscle. Here, isopolar arrays of microtubules are fabricated by flow alignment, and their quality is characterized by their degree of alignment. We find, in agreement with our analytical models, that the degree of alignment is ultimately limited by thermal forces, while the kinetics of the alignment process are influenced by the flow strength, the microtubule stiffness, the gliding velocity, and the tip length. Strong flows remove microtubules from the surface and reduce the filament density, suggesting that there is an optimal flow strength for the fabrication of ordered arrays.
引用
收藏
页码:2265 / 2272
页数:8
相关论文
共 66 条
  • [41] Cooperative cargo transport by several molecular motors
    Klumpp, S
    Lipowsky, R
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (48) : 17284 - 17289
  • [42] Korten T, 2011, METHODS MOL BIOL, V783, P121, DOI 10.1007/978-1-61779-282-3_7
  • [43] Towards the application of cytoskeletal motor proteins in molecular detection and diagnostic devices
    Korten, Till
    Mansson, Alf
    Diez, Stefan
    [J]. CURRENT OPINION IN BIOTECHNOLOGY, 2010, 21 (04) : 477 - 488
  • [44] Limberis L, 2001, NANO LETT, V1, P277, DOI 10.1021/n10155375
  • [45] Limberis L, 2000, NANOTECHNOLOGY, V11, P47, DOI 10.1088/0957-4484/11/2/301
  • [46] Self-contained biomolecular motor-driven protein sorting and concentrating in an ultrasensitive microfluidic chip
    Lin, Chih-Ting
    Kao, Ming-Tse
    Kurabayashi, Katsuo
    Meyhofer, Edgar
    [J]. NANO LETTERS, 2008, 8 (04) : 1041 - 1046
  • [47] Understanding energy dissipation and thermodynamics in biomotor-driven nanocomposite assemblies
    Liu, Haiqing
    Bachand, George D.
    [J]. SOFT MATTER, 2011, 7 (07) : 3087 - 3091
  • [48] Biomolecular Motor-Powered Self-Assembly of Dissipative Nanocomposite Rings
    Liu, Haiqing
    Spoerke, Erik D.
    Bachand, Marlene
    Koch, Steven J.
    Bunker, Bruce C.
    Bachand, George D.
    [J]. ADVANCED MATERIALS, 2008, 20 (23) : 4476 - 4481
  • [49] Scaling of maximum net force output by motors used for locomotion
    Marden, JH
    [J]. JOURNAL OF EXPERIMENTAL BIOLOGY, 2005, 208 (09) : 1653 - 1664
  • [50] Molecules, muscles, and machines: Universal performance characteristics of motors
    Marden, JH
    Allen, LR
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (07) : 4161 - 4166