Optimization of Isopolar Microtubule Arrays

被引:16
作者
Agayan, Rodney R. [1 ]
Tucker, Robert [2 ]
Nitta, Takahiro [1 ,3 ]
Ruhnow, Felix [4 ]
Walter, Wilhelm J. [4 ]
Diez, Stefan [4 ,5 ]
Hess, Henry [1 ,2 ]
机构
[1] Columbia Univ, Dept Biomed Engn, New York, NY 10027 USA
[2] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[3] Gifu Univ, Dept Math & Design Engn, Gifu 5011193, Japan
[4] Tech Univ Dresden, B CUBE Ctr Mol Bioengn, D-01307 Dresden, Germany
[5] Max Planck Inst Mol Cell Biol & Genet, D-01307 Dresden, Germany
关键词
MOTOR PROTEINS; UNIDIRECTIONAL TRANSPORT; NANOSCALE TRANSPORT; KINESIN; DRIVEN; ALIGNMENT; CARGO; TRANSLOCATION; EFFICIENCY; MACHINES;
D O I
10.1021/la303792v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Isopolar arrays of aligned cytoskeletal filaments are components in a number of designs of hybrid nanodevices incorporating biomolecular motors. For example, a combination of filament arrays and motor arrays can form an actuator or a molecular engine resembling an artificial muscle. Here, isopolar arrays of microtubules are fabricated by flow alignment, and their quality is characterized by their degree of alignment. We find, in agreement with our analytical models, that the degree of alignment is ultimately limited by thermal forces, while the kinetics of the alignment process are influenced by the flow strength, the microtubule stiffness, the gliding velocity, and the tip length. Strong flows remove microtubules from the surface and reduce the filament density, suggesting that there is an optimal flow strength for the fabrication of ordered arrays.
引用
收藏
页码:2265 / 2272
页数:8
相关论文
共 66 条
  • [11] Kinesin takes one 8-nm step for each ATP that it hydrolyzes
    Coy, DL
    Wagenbach, M
    Howard, J
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (06) : 3667 - 3671
  • [12] Engineered networks of oriented microtubule filaments for directed cargo transport
    Doot, Robert K.
    Hess, Henry
    Vogel, Viola
    [J]. SOFT MATTER, 2007, 3 (03) : 349 - 356
  • [13] Evans E., 2001, PHYS BIOMOLECULES CE, VLXXV, P187
  • [14] Fenn WO, 1923, J PHYSIOL-LONDON, V58, P0175
  • [15] Fischer T, 2009, NAT NANOTECHNOL, V4, P162, DOI [10.1038/nnano.2008.393, 10.1038/NNANO.2008.393]
  • [16] The microscopy cell (MicCell), a versatile modular flowthrough system for cell biology, biomaterial research, and nanotechnology
    Gast, FU
    Dittrich, PS
    Schwille, P
    Weigel, M
    Mertig, M
    Opitz, J
    Queitsch, U
    Diez, S
    Lincoln, B
    Wottawah, F
    Schinkinger, S
    Guck, J
    Käs, J
    Smolinski, J
    Salchert, K
    Werner, C
    Duschl, C
    Jäger, MS
    Uhlig, K
    Geggier, P
    Howitz, S
    [J]. MICROFLUIDICS AND NANOFLUIDICS, 2006, 2 (01) : 21 - 36
  • [17] Harnessing biological motors to engineer systems for nanoscale transport and assembly
    Goel, Anita
    Vogel, Viola
    [J]. NATURE NANOTECHNOLOGY, 2008, 3 (08) : 465 - 475
  • [18] ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition
    He, ZH
    Bottinelli, R
    Pellegrino, MA
    Ferenczi, MA
    Reggiani, C
    [J]. BIOPHYSICAL JOURNAL, 2000, 79 (02) : 945 - 961
  • [19] Light-controlled molecular shuttles made from motor proteins carrying cargo on engineered surfaces
    Hess, H
    Clemmens, J
    Qin, D
    Howard, J
    Vogel, V
    [J]. NANO LETTERS, 2001, 1 (05) : 235 - 239
  • [20] Molecular self-assembly of "nanowires" and "nanospools" using active transport
    Hess, H
    Clemmens, J
    Brunner, C
    Doot, R
    Luna, S
    Ernst, KH
    Vogel, V
    [J]. NANO LETTERS, 2005, 5 (04) : 629 - 633