Moderate deviations for empirical measures of Markov chains: Lower bounds

被引:0
|
作者
de Acosta, A [1 ]
机构
[1] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
关键词
moderate deviations; Markov chains; ergodicity of degree 2;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain lower bounds for moderate deviations of empirical measures of a Markov chain with general state space under the assumption of ergodicity of degree 2. We derive an explicit expression for the rate function.
引用
收藏
页码:259 / 284
页数:26
相关论文
共 50 条
  • [41] Eigenvalue bounds on restrictions of reversible nearly uncoupled Markov chains
    Meerbach, E
    Schutte, C
    Fischer, A
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 398 (1-3) : 141 - 160
  • [42] Formal error bounds for the state space reduction of Markov chains
    Michel, Fabian
    Siegle, Markus
    PERFORMANCE EVALUATION, 2025, 167
  • [43] Bounds on regeneration times and limit theorems for subgeometric Markov chains
    Douc, Randal
    Guillin, Arnaud
    Moulines, Eric
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (02): : 239 - 257
  • [44] Chernoff-Hoeffding Bounds for Markov Chains: Generalized and Simplified
    Chung, Kai-Min
    Lam, Henry
    Liu, Zhenming
    Mitzenmacher, Michael
    29TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE, (STACS 2012), 2012, 14 : 124 - 135
  • [45] Stochastic Bounds for Markov Chains on Intel Xeon Phi Coprocessor
    Bylina, Jaroslaw
    PARALLEL PROCESSING AND APPLIED MATHEMATICS (PPAM 2017), PT I, 2018, 10777 : 111 - 120
  • [46] Loss rates bounds in IP buffers by Markov chains aggregations
    Castel, Hind
    Mokdad, Lynda
    Pekergin, Nihal
    2007 IEEE/ACS INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS AND APPLICATIONS, VOLS 1 AND 2, 2007, : 623 - +
  • [47] Computing performability measures in Markov chains by means of matrix functions
    Masetti, G.
    Robol, L.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 368
  • [48] Change of measures for Markov chains and the LlogL theorem for branching processes
    Athreya, KB
    BERNOULLI, 2000, 6 (02) : 323 - 338
  • [49] Concentration inequalities, large and moderate deviations for self-normalized empirical processes
    Bercu, B
    Gassiat, E
    Rio, E
    ANNALS OF PROBABILITY, 2002, 30 (04) : 1576 - 1604
  • [50] Comparing eigenvalue bounds for Markov chains: When does Poincare beat Cheeger?
    Fulman, J
    Wilmer, EL
    ANNALS OF APPLIED PROBABILITY, 1999, 9 (01) : 1 - 13