Moderate deviations for empirical measures of Markov chains: Lower bounds

被引:0
|
作者
de Acosta, A [1 ]
机构
[1] Case Western Reserve Univ, Dept Math, Cleveland, OH 44106 USA
关键词
moderate deviations; Markov chains; ergodicity of degree 2;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We obtain lower bounds for moderate deviations of empirical measures of a Markov chain with general state space under the assumption of ergodicity of degree 2. We derive an explicit expression for the rate function.
引用
收藏
页码:259 / 284
页数:26
相关论文
共 50 条
  • [1] Moderate Deviations for Empirical Measures of Markov Chains: Upper Bounds
    A. de Acosta
    Xia Chen
    Journal of Theoretical Probability, 1998, 11 : 1075 - 1110
  • [2] Moderate deviations for empirical measures of Markov chains: Upper bounds
    de Acosta, A
    Chen, X
    JOURNAL OF THEORETICAL PROBABILITY, 1998, 11 (04) : 1075 - 1110
  • [3] Moderate deviations for Markov chains with atom
    Djellout, H
    Guillin, A
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 95 (02) : 203 - 217
  • [4] Moderate deviations for nonhomogeneous Markov chains
    Xu, Mingzhou
    Cheng, Kun
    Ding, Yunzheng
    STATISTICS & PROBABILITY LETTERS, 2020, 157
  • [5] Large and moderate deviations for bounded functions of slowly mixing Markov chains
    Dedecker, Jerome
    Gouezel, Sebastien
    Merlevede, Florence
    STOCHASTICS AND DYNAMICS, 2018, 18 (02)
  • [6] CONTRACTIVE COUPLING RATES AND CURVATURE LOWER BOUNDS FOR MARKOV CHAINS
    Pedrotti, Francesco
    ANNALS OF APPLIED PROBABILITY, 2025, 35 (01) : 196 - 250
  • [7] Moderate deviations of empirical processes
    Arcones, MA
    STOCHASTIC INEQUALITIES AND APPLICATIONS, 2003, 56 : 189 - 212
  • [8] Some bounds for Markov chains
    Mark B Cronshaw
    Levon S Kazarian
    International Journal of Game Theory, 1997, 26 : 579 - 582
  • [9] Some bounds for Markov chains
    Cronshaw, MB
    Kazarian, LS
    INTERNATIONAL JOURNAL OF GAME THEORY, 1997, 26 (04) : 579 - 582
  • [10] Convergence rates for empirical measures of Markov chains in dual and Wasserstein distances?
    Riekert, Adrian
    STATISTICS & PROBABILITY LETTERS, 2022, 189