Growth Mechanism of a Hybrid Structure Consisting of a Graphite Layer on Top of Vertical Carbon Nanotubes

被引:8
作者
Chiodarelli, Nicolo' [1 ,2 ]
Xu, Cigang [3 ]
Richard, Olivier [1 ]
Bender, Hugo [1 ]
Klekachev, Alexander [1 ,4 ]
Cooke, Mike [3 ]
Heyns, Marc [1 ,5 ]
De Gendt, Stefan [1 ,6 ]
Groeseneken, Guido [1 ,2 ]
Vereecken, Philippe M. [1 ,7 ]
机构
[1] IMEC, B-3001 Louvain, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Louvain, Belgium
[3] Oxford Instruments Plasma Technol, Bristol BS49 4AP, Avon, England
[4] Katholieke Univ Leuven, Dept Phys & Astron, B-3001 Louvain, Belgium
[5] Katholieke Univ Leuven, Dept Met & Mat Engn, B-3001 Louvain, Belgium
[6] Katholieke Univ Leuven, Dept Chem, B-3001 Louvain, Belgium
[7] Katholieke Univ Leuven, Ctr Surface Chem & Catalysis COK, B-3001 Louvain, Belgium
关键词
CHEMICAL-VAPOR-DEPOSITION; RAMAN-SPECTROSCOPY; GRAPHENE FILMS; PLASMA; NANOPARTICLES; PRETREATMENT; INTEGRATION; NUCLEATION; CATALYSTS; DIAMETER;
D O I
10.1155/2012/130725
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Graphene and carbon nanotubes (CNTs) are both carbon-based materials with remarkable optical and electronic properties which, among others, may find applications as transparent electrodes or as interconnects in microchips, respectively. This work reports on the formation of a hybrid structure composed of a graphitic carbon layer on top of vertical CNT in a single deposition process. The mechanism of deposition is explained according to the thickness of catalyst used and the atypical growth conditions. Key factors dictating the hybrid growth are the film thickness and the time dynamic through which the catalyst film dewets and transforms into nanoparticles. The results support the similarities between chemical vapor deposition processes for graphene, graphite, and CNT.
引用
收藏
页数:10
相关论文
共 51 条
[1]   Interaction of carbon clusters with Ni(100): Application to the nucleation of carbon nanotubes [J].
Amara, H. ;
Bichara, C. ;
Ducastelle, F. .
SURFACE SCIENCE, 2008, 602 (01) :77-83
[2]   Formation of carbon nanostructures on nickel surfaces: A tight-binding grand canonical Monte Carlo study [J].
Amara, H ;
Bichara, C ;
Ducastelle, F .
PHYSICAL REVIEW B, 2006, 73 (11)
[3]   Carbon-based electronics [J].
Avouris, Phaedon ;
Chen, Zhihong ;
Perebeinos, Vasili .
NATURE NANOTECHNOLOGY, 2007, 2 (10) :605-615
[4]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[5]   Plasma restructuring of catalysts for chemical vapor deposition of carbon nanotubes [J].
Cantoro, M. ;
Hofmann, S. ;
Mattevi, C. ;
Pisana, S. ;
Parvez, A. ;
Fasoli, A. ;
Ducati, C. ;
Scardaci, V. ;
Ferrari, A. C. ;
Robertson, J. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (06)
[6]   Combinatorial chips for optimizing the growth and integration of carbon nanofibre based devices [J].
Cassell, AM ;
Ye, Q ;
Cruden, BA ;
Li, J ;
Sarrazin, PC ;
Ng, HT ;
Han, J ;
Meyyappan, M .
NANOTECHNOLOGY, 2004, 15 (01) :9-15
[7]   Carbon nanotubes grown from nickel catalyst pretreated with H2/N2 plasma [J].
Chang, Shang-Chou ;
Lin, Tien-Chai ;
Li, To-Sing ;
Huang, Sheng-Han .
MICROELECTRONICS JOURNAL, 2008, 39 (12) :1572-1575
[8]   TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition [J].
Chen, XH ;
Wang, RM ;
Xu, J ;
Yu, DP .
MICRON, 2004, 35 (06) :455-460
[9]   Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition [J].
Chhowalla, M ;
Teo, KBK ;
Ducati, C ;
Rupesinghe, NL ;
Amaratunga, GAJ ;
Ferrari, AC ;
Roy, D ;
Robertson, J ;
Milne, WI .
JOURNAL OF APPLIED PHYSICS, 2001, 90 (10) :5308-5317
[10]  
Chiodarelli N., 2011, THESIS KATHOLIEKE U