Isolated nanographene crystals for nano-floating gate in charge trapping memory

被引:51
作者
Yang, Rong [1 ,2 ]
Zhu, Chenxin [3 ]
Meng, Jianling [1 ,2 ]
Huo, Zongliang [3 ]
Cheng, Meng [1 ,2 ]
Liu, Donghua [1 ,2 ]
Yang, Wei [1 ,2 ]
Shi, Dongxia [1 ,2 ]
Liu, Ming [3 ]
Zhang, Guangyu [1 ,2 ]
机构
[1] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Microelect, Lab Nanofabricat & Novel Devices Integrated Techn, Beijing 100029, Peoples R China
基金
美国国家科学基金会;
关键词
SURFACE-POTENTIALS; RAMAN-SPECTROSCOPY; GRAPHENE; DEVICES; GROWTH; NANOPARTICLES; EPITAXY;
D O I
10.1038/srep02126
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Graphene exhibits unique electronic properties, and its low dimensionality, structural robustness, and high work-function make it very promising as the charge storage media for memory applications. Along with the development of miniaturized and scaled up devices, nanostructured graphene emerges as an ideal material candidate. Here we proposed a novel non-volatile charge trapping memory utilizing isolate and uniformly distributed nanographene crystals as nano-floating gate with controllable capacity and excellent uniformity. Nanographene charge trapping memory shows large memory window (4.5 V) at low operation voltage (+/- 8 V), good retention (>10 years), chemical and thermal stability (1000 degrees C), as well as tunable memory performance employing with different tunneling layers. The fabrication of such memory structure is compatible with existing semiconductor processing thus has promise on low-cost integrated nanoscale memory applications.
引用
收藏
页数:7
相关论文
共 36 条
[1]  
[Anonymous], 2009, INT TECHNOLOGY ROADM
[2]   Quantum Confinement by an Order-Disorder Boundary in Nanocrystalline Silicon [J].
Bagolini, L. ;
Mattoni, A. ;
Fugallo, G. ;
Colombo, L. ;
Poliani, E. ;
Sanguinetti, S. ;
Grilli, E. .
PHYSICAL REVIEW LETTERS, 2010, 104 (17)
[3]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[4]   Developments in nanocrystal memory [J].
Chang, Ting-Chang ;
Jian, Fu-Yen ;
Chen, Shih-Cheng ;
Tsai, Yu-Ting .
MATERIALS TODAY, 2011, 14 (12) :608-615
[5]   Real versus measured surface potentials in scanning Kelvin probe microscopy [J].
Charrier, Dimitri S. H. ;
Kemerink, Martijn ;
Smalbrugge, Barry E. ;
de Vries, Tjibbe ;
Janssen, Rene A. J. .
ACS NANO, 2008, 2 (04) :622-626
[6]   Surface Potentials and Layer Charge Distributions in Few-Layer Graphene Films [J].
Datta, Sujit S. ;
Strachan, Douglas R. ;
Mele, E. J. ;
Johnson, A. T. Charlie .
NANO LETTERS, 2009, 9 (01) :7-11
[7]   Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon [J].
Ferrari, AC ;
Robertson, J .
PHYSICAL REVIEW B, 2001, 64 (07)
[8]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[9]   ULTRAHIGH-VACUUM QUASIEPITAXIAL GROWTH OF MODEL VAN-DER-WAALS THIN-FILMS .2. EXPERIMENT [J].
FORREST, SR ;
BURROWS, PE ;
HASKAL, EI ;
SO, FF .
PHYSICAL REVIEW B, 1994, 49 (16) :11309-11321
[10]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191