MODELING MAGNETIC FIELDS USING GAUSSIAN PROCESSES

被引:0
作者
Wahlstrom, Niklas [1 ]
Kok, Manon [1 ]
Schon, Thomas B. [1 ]
Gustafsson, Fredrik [1 ]
机构
[1] Linkoping Univ, Div Automat Control, Linkoping, Sweden
来源
2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP) | 2013年
关键词
magnetic field; Gaussian processes; Maxwell's equations; divergence-free; curl-free;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Starting from the electromagnetic theory, we derive a Bayesian non-parametric model allowing for joint estimation of the magnetic field and the magnetic sources in complex environments. The model is a Gaussian process which exploits the divergence- and curl-free properties of the magnetic field by combining well-known model components in a novel manner. The model is estimated using magnetometer measurements and spatial information implicitly provided by the sensor. The model and the associated estimator are validated on both simulated and real world experimental data producing Bayesian non-parametric maps of magnetized objects.
引用
收藏
页码:3522 / 3526
页数:5
相关论文
共 20 条
[1]   Kernels for Vector-Valued Functions: A Review [J].
Alvarez, Mauricio A. ;
Rosasco, Lorenzo ;
Lawrence, Neil D. .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (03) :195-266
[2]  
[Anonymous], 1865, Philos. Trans. R. Soc. Lond
[3]  
[Anonymous], 2011, Proceedings of the 9th international conference on Mobile systems, applications, and services, MobiSys '11, DOI DOI 10.1145/1999995.2000010
[4]  
[Anonymous], 1999, SPRINGER SCI
[5]  
[Anonymous], 2009, Classical Electrodynamics
[6]  
Baldassarre L, 2010, LECT NOTES ARTIF INT, V6321, P56, DOI 10.1007/978-3-642-15880-3_10
[7]  
Fox EB, 2012, ADV NEURAL INFORM PR, V25, P746
[8]  
Fuselier E.J., 2006, Thesis (Ph.D.)
[9]  
Haiyang Zhang, 2011, 2011 IEEE Conference on Technologies for Practical Robot Applications (TePRA), P25, DOI 10.1109/TEPRA.2011.5753476
[10]  
Kemppainen A., 2011, P EUR C MOB ROB OR S, P283