Traveling time and traveling length in critical percolation clusters

被引:72
作者
Lee, Y [1 ]
Andrade, JS
Buldyrev, SV
Dokholyan, NV
Havlin, S
King, PR
Paul, G
Stanley, HE
机构
[1] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[2] Boston Univ, Dept Phys, Boston, MA 02215 USA
[3] Univ Fed Ceara, Dept Fis, BR-60451970 Fortaleza, Ceara, Brazil
[4] Bar Ilan Univ, Dept Phys, Ramat Gan, Israel
[5] Bar Ilan Univ, Minerva Ctr, Ramat Gan, Israel
[6] BP Amoco Explorat, Sunbury TW16 7LN, Middx, England
[7] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
来源
PHYSICAL REVIEW E | 1999年 / 60卷 / 03期
关键词
D O I
10.1103/PhysRevE.60.3425
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study traveling time and traveling length for tracer dispersion in two-dimensional bond percolation, modeling flow by tracer particles driven by a pressure difference between two points separated by Euclidean distance r. We find that the minimal traveling time t(min) scales as t(min)similar to r(1.33), which is different from the scaling of the most probable traveling time, (t) over tilde similar to r(1.64). We also calculate the length of the path corresponding to the minimal traveling time and find l(min)similar to r(1.13) and that the most probable traveling length scales as (l) over tilde similar to r(1.21). We present the relevant distribution functions and scaling relations, [S1063-651X(99)02809-3].
引用
收藏
页码:3425 / 3428
页数:4
相关论文
共 15 条
[1]  
BACRI JC, 1990, HYDRODYNAMICS DISPER, P249
[2]  
Bunde A., 1996, FRACTALS DISORDERED, DOI DOI 10.1007/978-3-642-84868-1
[3]   OPTIMAL PATHS AND DOMAIN-WALLS IN THE STRONG DISORDER LIMIT [J].
CIEPLAK, M ;
MARITAN, A ;
BANAVAR, JR .
PHYSICAL REVIEW LETTERS, 1994, 72 (15) :2320-2324
[4]   Invasion percolation and Eden growth: Geometry and universality [J].
Cieplak, M ;
Maritan, A ;
Banavar, JR .
PHYSICAL REVIEW LETTERS, 1996, 76 (20) :3754-3757
[5]   ANOMALOUS VOLTAGE DISTRIBUTION OF RANDOM RESISTOR NETWORKS AND A NEW MODEL FOR THE BACKBONE AT THE PERCOLATION-THRESHOLD [J].
DE ARCANGELIS, L ;
REDNER, S ;
CONIGLIO, A .
PHYSICAL REVIEW B, 1985, 31 (07) :4725-4727
[6]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[7]   Scaling of the distribution of shortest paths in percolation [J].
Dokholyan, NV ;
Lee, YK ;
Buldyrev, SV ;
Havlin, S ;
King, PR ;
Stanley, HE .
JOURNAL OF STATISTICAL PHYSICS, 1998, 93 (3-4) :603-613
[8]   Conductivity exponent and backbone dimension in 2-d percolation [J].
Grassberger, P .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1999, 262 (3-4) :251-263
[9]   DIFFUSION IN DISORDERED MEDIA [J].
HAVLIN, S ;
BENAVRAHAM, D .
ADVANCES IN PHYSICS, 1987, 36 (06) :695-798
[10]   THE FRACTAL DIMENSION OF THE MINIMUM PATH IN TWO-DIMENSIONAL AND 3-DIMENSIONAL PERCOLATION [J].
HERRMANN, HJ ;
STANLEY, HE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (17) :L829-L833