Rationality of moduli spaces of parabolic bundles

被引:33
作者
Boden, HU [1 ]
Yokogawa, K
机构
[1] Ohio State Univ, Dept Math, Mansfield, OH 44906 USA
[2] Osaka Univ, Fac Sci, Dept Math, Toyonaka, Osaka 560, Japan
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 1999年 / 59卷
关键词
D O I
10.1112/S0024610799007061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The moduli space of parabolic bundles with fixed determinant over a smooth curve of genus greater than one is proved to be rational whenever one of the multiplicities of the quasi-parabolic structure equals one. This gives a new proof that the moduli space of vector bundles of coprime rank and degree is stably rational, a result originally due to Ballico, and the bound on the level is strong enough to deduce rationality in many cases, extending results of Newstead.
引用
收藏
页码:461 / 478
页数:18
相关论文
共 19 条
[1]  
Atiyah M. F., 1957, Proceedings of the London Mathematical Society, V7, P414, DOI 10.1112/plms/s3-7.1.414
[2]  
BALLICO E, 1984, J LOND MATH SOC, V30, P21
[3]   PARABOLIC BUNDLES, ELLIPTIC-SURFACES AND SU(2)-REPRESENTATION SPACES OF GENUS ZERO FUCHSIAN-GROUPS [J].
BAUER, S .
MATHEMATISCHE ANNALEN, 1991, 290 (03) :509-526
[4]  
Bertram A., 1994, J ALG GEOMETRY, V3, P703
[5]   PARABOLIC VECTOR-BUNDLES ON CURVES [J].
BHOSLE, UN .
ARKIV FOR MATEMATIK, 1989, 27 (01) :15-22
[6]   Moduli spaces of parabolic higgs bundles and parabolic K(D) pairs over smooth curves .1. [J].
Boden, HU ;
Yokogawa, K .
INTERNATIONAL JOURNAL OF MATHEMATICS, 1996, 7 (05) :573-598
[7]   REPRESENTATIONS OF ORBIFOLD GROUPS AND PARABOLIC BUNDLES [J].
BODEN, HU .
COMMENTARII MATHEMATICI HELVETICI, 1991, 66 (03) :389-447
[8]   VARIATIONS OF MODULI OF PARABOLIC BUNDLES [J].
BODEN, HU ;
HU, Y .
MATHEMATISCHE ANNALEN, 1995, 301 (03) :539-559
[9]  
BODEN HU, 1997, AMS IP STUDIES ADV M, V2, P259
[10]   MODULI OF VECTOR-BUNDLES ON CURVES WITH PARABOLIC STRUCTURES [J].
MEHTA, VB ;
SESHADRI, CS .
MATHEMATISCHE ANNALEN, 1980, 248 (03) :205-239