Boundary Behavior of α-Harmonic Functions on the Complement of the Sphere and Hyperplane

被引:3
作者
Luks, Tomasz [1 ]
机构
[1] Univ Angers, LAREMA, Math Lab, F-49045 Angers 01, France
关键词
alpha-harmonic functions; Fractional Laplacian; Hardy spaces; Stable Levy process; RELATIVE FATOU THEOREM; HARNACK PRINCIPLE; MARTIN BOUNDARY; GREEN-FUNCTIONS; POTENTIALS; SPACES;
D O I
10.1007/s11118-012-9321-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study alpha-harmonic functions on the complement of the sphere and on the complement of the hyperplane in Euclidean spaces of dimension bigger than one, for alpha aaEuro parts per thousand(1,2). We describe the corresponding Hardy spaces and prove the Fatou theorem for alpha-harmonic functions. We also give explicit formulas for the Martin kernel of the complement of the sphere and for the harmonic measure, Green function and Martin kernel of the complement of the hyperplane for the symmetric alpha-stable L,vy processes. Some extensions for the relativistic alpha-stable processes are discussed.
引用
收藏
页码:29 / 67
页数:39
相关论文
共 47 条
  • [1] Boundary Harnack principle and Martin boundary for a uniform domain
    Aikawa, H
    [J]. JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2001, 53 (01) : 119 - 145
  • [2] Ancona A., 1978, Ann. Inst. Fourier (Grenoble), V28, P169, DOI [10.5802/aif.720, DOI 10.5802/AIF.720]
  • [3] [Anonymous], 2002, HDB BROWNIAN MOTION, DOI DOI 10.1007/978-3-0348-8163-0
  • [4] [Anonymous], 1984, CLASSICAL POTENTIAL
  • [5] [Anonymous], 1953, Higher transcendental functions
  • [6] Axler S, 2001, Graduate Texts in Mathematics series, VSecond
  • [7] A Fatou theorem for a α-harmonic functions
    Bass, RF
    You, DH
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2003, 127 (07): : 635 - 648
  • [8] On Kelvin transformation
    Bogdan, K.
    Zak, T.
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2006, 19 (01) : 89 - 120
  • [9] Bogdan K, 1997, STUD MATH, V123, P43
  • [10] Bogdan K, 1999, STUD MATH, V133, P53