Automatic segmentation of cerebral white matter hyperintensities using only 3D FLAIR images

被引:44
作者
Simoes, Rita [1 ]
Moenninghoff, Christoph [2 ]
Dlugaj, Martha [3 ]
Weimar, Christian [3 ]
Wanke, Isabel [2 ]
van Walsum, Anne-Marie van Cappellen [1 ,4 ]
Slump, Cornelis [1 ]
机构
[1] Univ Twente, MIRA Inst Biomed Technol & Tech Med, NL-7500 AE Enschede, Netherlands
[2] Univ Hosp Essen, Dept Diagnost & Intervent Radiol & Neuroradiol, Essen, Germany
[3] Univ Hosp Essen, Dept Neurol, Essen, Germany
[4] Radboud Univ Nijmegen, Med Ctr, Dept Anat, NL-6525 ED Nijmegen, Netherlands
关键词
White matter hyperintensities; Magnetic resonance imaging; Fluid-attenuation inversion recovery; Automatic segmentation; ATTENUATED INVERSION-RECOVERY; MR-IMAGES; LESION SEGMENTATION; MULTIPLE-SCLEROSIS; BRAIN; PREVALENCE; MIXTURE; MODEL; FLUID;
D O I
10.1016/j.mri.2012.12.004
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Magnetic Resonance (MR) white matter hyperintensities have been shown to predict an increased risk of developing cognitive decline. However, their actual role in the conversion to dementia is still not fully understood. Automatic segmentation methods can help in the screening and monitoring of Mild Cognitive Impairment patients who take part in large population-based studies. Most existing segmentation approaches use multimodal MR images. However, multiple acquisitions represent a limitation in terms of both patient comfort and computational complexity of the algorithms. In this work, we propose an automatic lesion segmentation method that uses only three-dimensional fluid-attenuation inversion recovery (FLAIR) images. We use a modified context-sensitive Gaussian mixture model to determine voxel class probabilities, followed by correction of FLAIR artifacts. We evaluate the method against the manual segmentation performed by an experienced neuroradiologist and compare the results with other unimodal segmentation approaches. Finally, we apply our method to the segmentation of multiple sclerosis lesions by using a publicly available benchmark dataset. Results show a similar performance to other state-of-the-art multimodal methods, as well as to the human rater. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1182 / 1189
页数:8
相关论文
共 39 条
[1]   Fully automatic segmentation of white matter hyperintensities in MR images of the elderly [J].
Admiraal-Behloul, F ;
van den Heuvel, DMJ ;
Olofsen, H ;
van Osch, MJP ;
van der Grond, J ;
van Buchem, MA ;
Relber, JHC .
NEUROIMAGE, 2005, 28 (03) :607-617
[2]   Automatic segmentation of different-sized white matter lesions by voxel probability estimation [J].
Anbeek, P ;
Vincken, KL ;
van Osch, MJP ;
Bisschops, RHC ;
van der Grond, J .
MEDICAL IMAGE ANALYSIS, 2004, 8 (03) :205-215
[3]  
[Anonymous], 2008, MIDAS J
[4]  
Barkhof F, 2007, RADIOLOGY ASSISTANT
[5]   MEASUREMENT AND RELIABILITY - STATISTICAL THINKING CONSIDERATIONS [J].
BARTKO, JJ .
SCHIZOPHRENIA BULLETIN, 1991, 17 (03) :483-489
[6]   A spatially constrained mixture model for image segmentation [J].
Blekas, K ;
Likas, A ;
Galatsanos, NP ;
Lagaris, IE .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (02) :494-498
[7]   Estimation of fuzzy gaussian mixture and unsupervised statistical image segmentation [J].
Caillol, H ;
Pieczynski, W ;
Hillion, A .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (03) :425-440
[8]   Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure [J].
Chen, SC ;
Zhang, DQ .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (04) :1907-1916
[9]   White matter lesion extension to automatic brain tissue segmentation on MRI [J].
de Boer, Renske ;
Vrooman, Henri A. ;
van der Lijn, Fedde ;
Vernooij, Meike W. ;
Ikram, M. Arfan ;
van der Lugt, Aad ;
Breteler, Monique M. B. ;
Niessen, Wiro J. .
NEUROIMAGE, 2009, 45 (04) :1151-1161
[10]   Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study [J].
de Leeuw, FE ;
de Groot, JC ;
Achten, E ;
Oudkerk, M ;
Ramos, LMP ;
Heijboer, R ;
Hofman, A ;
Jolles, J ;
van Gijn, J ;
Breteler, MMB .
JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2001, 70 (01) :9-14