Idempotent states on compact quantum groups and their classification on Uq(2), SUq(2), and SOq(3)

被引:22
作者
Franz, Uwe [1 ]
Skalski, Adam [2 ]
Tomatsu, Reiji [3 ]
机构
[1] Univ Franche Comte, Dept Math Besancon, F-25030 Besancon, France
[2] Polish Acad Sci, Inst Math, PL-00956 Warsaw, Poland
[3] Hokkaido Univ, Dept Math, Kita Ku, Sapporo, Hokkaido 0600810, Japan
关键词
Compact quantum group; quantum subgroup; idempotent state; Haar state; REPRESENTATIONS; ALGEBRA; SU(2);
D O I
10.4171/JNCG/115
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Unlike for locally compact groups, idempotent states on locally compact quantum groups do not necessarily arise as Haar states of compact quantum subgroups. We give a simple characterisation of those idempotent states on compact quantum groups that do arise as Haar states on quantum subgroups. We also show that all idempotent states on the quantum groups U-q(2), SUq(2), and SOq(3) (q is an element of (-1, 0) boolean OR (0, 1]) arise in this manner and list the idempotent states on the compact quantum semigroups U-0(2), SU0(2), and SO0(3). In the Appendix we provide a short new proof of the coamenability of deformations of classical compact Lie groups based on their representation theory.
引用
收藏
页码:221 / 254
页数:34
相关论文
共 40 条
[1]   Multiplicative unitaries on a finite dimensional space and their subobjects [J].
Baaj, S ;
Blanchard, E ;
Skandalis, G .
ANNALES DE L INSTITUT FOURIER, 1999, 49 (04) :1305-+
[2]   CHARACTERIZATION OF FINITE DEDEKIND GROUPS [J].
BAER, R .
NAGOYA MATHEMATICAL JOURNAL, 1966, 27 (01) :21-&
[3]  
Banica T, 1999, J REINE ANGEW MATH, V509, P167
[4]   HOPF IMAGES AND INNER FAITHFUL REPRESENTATIONS [J].
Banica, Teodor ;
Bichon, Julien .
GLASGOW MATHEMATICAL JOURNAL, 2010, 52 :677-703
[5]  
Bédos E, 2001, J GEOM PHYS, V40, P130, DOI 10.1016/S0393-0440(01)00024-9
[6]  
Bedos E., 2002, INT J MATH MATH SCI, V31, P577
[7]  
Chapovsky YA, 1999, J OPERAT THEOR, V41, P261
[8]   SCHWARZ INEQUALITY FOR POSITIVE LINEAR MAPS ON C-STAR-ALGEBRAS [J].
CHOI, MD .
ILLINOIS JOURNAL OF MATHEMATICS, 1974, 18 (04) :565-574
[9]   ALGEBRAIC QUANTUM HYPERGROUPS II. CONSTRUCTIONS AND EXAMPLES [J].
Delvaux, L. ;
Van Daele, A. .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2011, 22 (03) :407-434
[10]  
Franz U., 2000, INFINITE DIMENSIONAL, P93