Non-involutive constrained systems and Hamilton-Jacobi formalism

被引:23
作者
Bertin, M. C. [1 ]
Pimentel, B. M. [1 ]
Valcarcel, C. E. [1 ]
机构
[1] Sao Paulo State Univ, Inst Fis Teor, BR-01405000 Sao Paulo, Brazil
关键词
Hamilton-Jacobi formalism; Constrained systems; Generalized Brackets;
D O I
10.1016/j.aop.2008.09.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work we discuss the natural appearance of the Generalized Brackets in systems with non-involutive (equivalent to second class) constraints in the Hamilton-Jacobi formalism. We show how a consistent geometric interpretation of the integrability conditions leads to the reduction of degrees of freedom of these systems and, as consequence, naturally defines a dynamics in a reduced phase space. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:3137 / 3149
页数:13
相关论文
共 10 条
  • [1] Hamilton-Jacobi approach for first order actions and theories with higher derivatives
    Bertin, M. C.
    Pimentel, B. M.
    Pompeia, P. J.
    [J]. ANNALS OF PHYSICS, 2008, 323 (03) : 527 - 547
  • [2] First-order actions: A new view
    Bertin, MC
    Pimentel, BM
    Pompeia, PJ
    [J]. MODERN PHYSICS LETTERS A, 2005, 20 (37) : 2873 - 2889
  • [3] Caratheodory C., 1967, CALCULUS VARIATION 2
  • [4] Dirac P.A.M., 1964, Lectures on Quantum Mechanics, Belfer Graduate School Monograph Series
  • [5] GENERALIZED HAMILTONIAN DYNAMICS
    DIRAC, PAM
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1950, 2 (02): : 129 - 148
  • [6] Guler Y., 1992, NUOVO CIMENTO B, V107, P1398
  • [7] Hamilton-Jacobi approach to Berezinian singular systems
    Pimentel, BM
    Teixeira, RG
    Tomazelli, JL
    [J]. ANNALS OF PHYSICS, 1998, 267 (01) : 75 - 96
  • [8] Pimentel BM, 1996, NUOVO CIMENTO B, V111, P841, DOI 10.1007/BF02749015
  • [9] HAMILTON-JACOBI TREATMENT OF SECOND-CLASS CONSTRAINTS
    RABEI, EM
    GULER, Y
    [J]. PHYSICAL REVIEW A, 1992, 46 (06): : 3513 - 3515
  • [10] On the Hamilton-Jacobi equation for second-class constrained systems
    Rothe, KD
    Scholtz, FG
    [J]. ANNALS OF PHYSICS, 2003, 308 (02) : 639 - 651