Optimally solving a transportation problem using Voronoi diagrams

被引:10
作者
Geiss, Darius [1 ]
Klein, Rolf [1 ]
Penninger, Rainer [1 ]
Rote, Guenter [2 ]
机构
[1] Rhein Freidrich Wilhelms Univ Bonn, Inst Comp Sci 1, D-53113 Bonn, Germany
[2] Free Univ Berlin, Inst Informat, D-14195 Berlin, Germany
来源
COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS | 2013年 / 46卷 / 08期
关键词
Monge-Kantorovich transportation problem; Earth mover's distance; Voronoi diagram with additive weights; Wasserstein metric; GEOMETRY;
D O I
10.1016/j.comgeo.2013.05.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the following variant of the well-known Monge-Kantorovich transportation problem. Let S be a set of n point sites in R-d. A bounded set C subset of R-d is to be distributed among the sites p is an element of S such that (i) each p receives a subset C-p of prescribed volume and (ii) the average distance of all points z of C from their respective sites p is minimized. In our model, volume is quantified by a measure mu, and the distance between a site p and a point z is given by a function d(p)(z). Under quite liberal technical assumptions on C and on the functions d(p)(.) we show that a solution of minimum total cost can be obtained by intersecting with C the Voronoi diagram of the sites in S, based on the functions d(p)(.) equipped with suitable additive weights. Moreover, this optimum partition is unique, up to sets of measure zero. Unlike the deep analytic methods of classical transportation theory, our proof is based directly on simple geometric arguments. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:1009 / 1016
页数:8
相关论文
共 13 条
  • [1] [Anonymous], 1999, HDB COMPUTATIONAL GE
  • [2] Appell P., 1887, M'emoires pr'esent'es par divers savants 'a l'Acad'emie royale des sciences de l'Institut de France, V29, P1
  • [3] Minkowski-type theorems and least-squares clustering
    Aurenhammer, F
    Hoffmann, F
    Aronov, B
    [J]. ALGORITHMICA, 1998, 20 (01) : 61 - 76
  • [4] The geometry of optimal transportation
    Gangbo, W
    McCann, RJ
    [J]. ACTA MATHEMATICA, 1996, 177 (02) : 113 - 161
  • [5] Geig D., 2012, 28 EUR WORKSH COMP G, P241
  • [6] GeiSS Darius, 2012, Computing and Combinatorics. Proceedings of the 18th Annual International Conference COCOON 2012, P264, DOI 10.1007/978-3-642-32241-9_23
  • [7] Kantorovich LV., 1948, C. R. (Dokl.) Acad. Sci. URSS, V3, P225, DOI [10.1007/s10958-006-0050-9, DOI 10.1007/S10958-006-0050-9]
  • [8] Mange G., 1781, HIST ACAD ROYALE SCI, V29, P666
  • [9] Rote G., 2009, 25 EUR WORKSH COMP G, P187
  • [10] A metric for distributions with applications to image databases
    Rubner, Y
    Tomasi, C
    Guibas, LJ
    [J]. SIXTH INTERNATIONAL CONFERENCE ON COMPUTER VISION, 1998, : 59 - 66