Interaction-enhanced integer quantum Hall effect in disordered systems

被引:16
作者
Zheng, Jun-Hui [1 ]
Qin, Tao [1 ,2 ]
Hofstetter, Walter [1 ]
机构
[1] Goethe Univ, Inst Theoret Phys, D-60438 Frankfurt, Germany
[2] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China
关键词
ENERGY; CONDUCTANCE; LATTICE;
D O I
10.1103/PhysRevB.99.125138
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study transport properties and topological phase transition in two-dimensional interacting disordered systems. We derive the Hall conductance within real-space dynamical mean-field theory, which is quantized and serves as a topological invariant for insulators, even when the energy gap is closed by localized states. In the spinful Harper-Hofstadter-Hatsugai model, in the trivial insulator regime, we find that the repulsive on-site interaction can assist weak disorder to induce the integer quantum Hall effect, while in the topologically nontrivial regime, it impedes Anderson localization. Generally, the interaction broadens the regime of the topological phase in the disordered system.
引用
收藏
页数:10
相关论文
共 77 条
[11]   Suppression of transport of an interacting elongated Bose-Einstein condensate in a random potential -: art. no. 170409 [J].
Clément, D ;
Varón, AF ;
Hugbart, M ;
Retter, JA ;
Bouyer, P ;
Sanchez-Palencia, L ;
Gangardt, DM ;
Shlyapnikov, GV ;
Aspect, A .
PHYSICAL REVIEW LETTERS, 2005, 95 (17)
[12]   Renormalization group approach for the scattering off a single Rashba impurity in a helical liquid [J].
Crepin, Francois ;
Budich, Jan Carl ;
Dolcini, Fabrizio ;
Recher, Patrik ;
Trauzettel, Bjoern .
PHYSICAL REVIEW B, 2012, 86 (12)
[13]   Atomic Bose and Anderson glasses in optical lattices [J].
Damski, B ;
Zakrzewski, J ;
Santos, L ;
Zoller, P ;
Lewenstein, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (08) :804031-804034
[14]   Quantum simulation of a topological Mott insulator with Rydberg atoms in a Lieb lattice [J].
Dauphin, A. ;
Mueller, M. ;
Martin-Delgado, M. A. .
PHYSICAL REVIEW A, 2016, 93 (04)
[15]   Delocalization of boundary states in disordered topological insulators [J].
Essin, Andrew M. ;
Gurarie, Victor .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (11)
[16]   Anderson transitions [J].
Evers, Ferdinand ;
Mirlin, Alexander D. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1355-1417
[17]   Random Rashba spin-orbit coupling at the quantum spin Hall edge [J].
Geissler, Florian ;
Crepin, Francois ;
Trauzettel, Bjoern .
PHYSICAL REVIEW B, 2014, 89 (23)
[18]   Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions [J].
Georges, A ;
Kotliar, G ;
Krauth, W ;
Rozenberg, MJ .
REVIEWS OF MODERN PHYSICS, 1996, 68 (01) :13-125
[19]   Theory of the Topological Anderson Insulator [J].
Groth, C. W. ;
Wimmer, M. ;
Akhmerov, A. R. ;
Tworzydlo, J. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2009, 103 (19)
[20]   ENERGY-SPECTRUM AND THE QUANTUM HALL-EFFECT ON THE SQUARE LATTICE WITH NEXT-NEAREST-NEIGHBOR HOPPING [J].
HATSUGAI, Y ;
KOHMOTO, M .
PHYSICAL REVIEW B, 1990, 42 (13) :8282-8294