Influence of Crystalline and Shape Anisotropy on Electrochromic Modulation in Doped Semiconductor Nanocrystals

被引:33
作者
Heo, Sungyeon [1 ]
Cho, Shin Hum [1 ]
Dahlman, Clayton J. [2 ]
Agrawal, Ankit [3 ]
Milliron, Delia J. [1 ]
机构
[1] Univ Texas Austin, McKetta Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Calif Santa Barbara, Mat Dept, Santa Barbara, CA 93106 USA
[3] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
SURFACE-PLASMON RESONANCE; COLORATION EFFICIENCY; TUNGSTEN BRONZE; DEVICES; NANOPARTICLES; NANORODS; DEFECTS; SIZE;
D O I
10.1021/acsenergylett.0c01236
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Localized surface plasmon resonance (LSPR) modulation appearing in the near-infrared range in doped semiconductor nanocrystals improves electrochromic performance. Although crystalline and shape anisotropies influence LSPR spectra, studies of their impact on electrochromic modulation are lacking. Here, we study how crystalline anisotropy in hexagonal cesium-doped tungsten oxide nanorods and nanoplatelets affects essential metrics of electrochromic modulation-coloration efficiency (CE) and volumetric capacity-using electrolyte cations of different sizes (tetrabutylammonium, sodium, and lithium) as structurally sensitive electrochemical probes. The CE of nanorod films is higher than that of nanoplatelets in all of the electrolytes owing to the low effective mass along the crystalline c-axis. When using sodium cations, which diffuse through one-dimensional hexagonal tunnels, the electrochemical capacity is significantly greater for platelets than for nanorods. This difference is explained by the hexagonal tunnel sites being more accessible in platelets than in nanorods. Our work sheds light on the role of shape and crystalline anisotropy in charge capacity and CE, both of which contribute to overall modulation.
引用
收藏
页码:2662 / 2670
页数:9
相关论文
共 45 条
[1]   Localized Surface Plasmon Resonance in Semiconductor Nanocrystals [J].
Agrawal, Ankit ;
Cho, Shin Hum ;
Zandi, Omid ;
Ghosh, Sandeep ;
Johns, Robert W. ;
Milliron, Delia J. .
CHEMICAL REVIEWS, 2018, 118 (06) :3121-3207
[2]   Nonstoichiometric LiFePO4: Defects and Related Properties [J].
Axmann, P. ;
Stinner, C. ;
Wohlfahrt-Mehrens, M. ;
Mauger, A. ;
Gendron, F. ;
Julien, C. M. .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1636-1644
[3]   Hexagonal Tungsten Oxide Based Electrochromic Devices: Spectroscopic Evidence for the Li Ion Occupancy of Four-Coordinated Square Windows [J].
Balaji, Subramanian ;
Djaoued, Yahia ;
Albert, Andre-Sebastien ;
Ferguson, Richard Z. ;
Bruening, Ralf .
CHEMISTRY OF MATERIALS, 2009, 21 (07) :1381-1389
[4]   A dual band electrochromic device switchable across four distinct optical modes [J].
Barawi, Mariam ;
Veramonti, Giulia ;
Epifani, Mauro ;
Giannuzzi, Roberto ;
Sibillano, Teresa ;
Giannini, Cinzia ;
Rougier, Aline ;
Manca, Michele .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (22) :10201-10205
[5]   Dual Band Electrochromic Devices Based on Nb-Doped TiO2 Nanocrystalline Electrodes [J].
Barawi, Mariam ;
De Trizio, Luca ;
Giannuzzi, Roberto ;
Veramonti, Giulia ;
Manna, Liberato ;
Manca, Michele .
ACS NANO, 2017, 11 (04) :3576-3584
[6]   Fluoride-Assisted Synthesis of Plasmonic Colloidal Ta-Doped TiO2 Nanocrystals for Near-Infrared and Visible-Light Selective Electrochromic Modulation [J].
Cao, Sheng ;
Zhang, Shengliang ;
Zhang, Tianran ;
Lee, Jim Yang .
CHEMISTRY OF MATERIALS, 2018, 30 (14) :4838-4846
[7]   Polythiophene-nanoWO3 bilayer as an electrochromic infrared filter: a transparent heat shield [J].
Chaudhary, Anjati ;
Pathak, Devesh K. ;
Tanwar, Manushi Ee ;
Koch, Julian ;
Pfnuer, Herbert ;
Kumar, Rajesh .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (05) :1773-1780
[8]   High-Coloration Efficiency Electrochromic Device Based on Novel Porous TiO2@Prussian Blue Core-Shell Nanostructures [J].
Chen, Yongbo ;
Bi, Zhijie ;
Li, Xiaomin ;
Xu, Xiaoke ;
Zhang, Shude ;
Hu, Xuemei .
ELECTROCHIMICA ACTA, 2017, 224 :534-540
[9]   Syntheses of Colloidal F:In2O3 Cubes: Fluorine-Induced Faceting and Infrared Plasmonic Response [J].
Cho, Shin Hum ;
Ghosh, Sandeep ;
Berkson, Zachariah J. ;
Hachtel, Jordan A. ;
Shi, Jianjian ;
Zhao, Xunhua ;
Reimnitz, Lauren C. ;
Dahlman, Clayton J. ;
Ho, Yujing ;
Yang, Anni ;
Liu, Yuanyue ;
Idrobo, Juan-Carlos ;
Chmelka, Bradley F. ;
Milliron, Delia J. .
CHEMISTRY OF MATERIALS, 2019, 31 (07) :2661-2676
[10]   Anisotropic Origins of Localized Surface Plasmon Resonance in n-Type Anatase TiO2 Nanocrystals [J].
Dahlman, Clayton J. ;
Agrawal, Ankit ;
Staller, Corey M. ;
Adair, Jacob ;
Milliron, Delia J. .
CHEMISTRY OF MATERIALS, 2019, 31 (02) :502-511