On the numerical solution of Cauchy singular integral equations in neutron transport

被引:8
作者
Mohankumar, N. [1 ]
Natarajan, A. [1 ]
机构
[1] Indira Gandhi Ctr Atom Res, Radiol Safety Div, Kalpakkam 603102, Tamil Nadu, India
关键词
D O I
10.1016/j.anucene.2008.05.007
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The use of Case eigen functions in the solution of Boltzmann equation for neutron transport results in an integral equation with a singular kernel. We show a solution prescription that combines a polynomial expansion for the unknown, a collocation procedure for fixing the expansion coefficients and a Double Exponential quadrature for the Cauchy principal value integral. For a set of test problems, we demonstrate the advantages of this method over the same procedure based on the TANH quadrature. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1800 / 1804
页数:5
相关论文
共 18 条
[1]  
[Anonymous], 1994, Transport Theory and Statistical Physics
[2]  
[Anonymous], SINGULAR INTEGRAL EQ
[3]  
Case KM., 1967, LINEAR TRANSPORT THE
[4]  
Gakhov F.D., 1966, Boundary Value Problems
[5]  
GOLBERG M. A., 1990, NUMERICAL SOLUTION I, V42, P183
[6]   FN METHOD IN NEUTRON-TRANSPORT THEORY .2. APPLICATIONS AND NUMERICAL RESULTS [J].
GRANDJEAN, P ;
SIEWERT, CE .
NUCLEAR SCIENCE AND ENGINEERING, 1979, 69 (02) :161-168
[7]   AN ITERATIVE ALGORITHM FOR THE NUMERICAL-SOLUTION OF SINGULAR INTEGRAL-EQUATIONS [J].
IOAKIMIDIS, NI .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 43 (01) :164-176
[8]   ON A CERTAIN QUADRATURE FORMULA [J].
IRI, M ;
MORIGUTI, S ;
TAKASAWA, Y .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (1-2) :3-20
[9]   TRANSPORT SOLUTIONS TO 1-DIMENSIONAL CRITICAL PROBLEM [J].
MITSIS, GJ .
NUCLEAR SCIENCE AND ENGINEERING, 1963, 17 (01) :55-&
[10]  
Mohankumar N., 1987, Transport Theory and Statistical Physics, V16, P1013, DOI 10.1080/00411458708204604