ANALYSIS OF A SPLITTING SCHEME FOR A CLASS OF RANDOM NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

被引:7
作者
Duboscq, Romain [1 ]
Marty, Renaud [2 ]
机构
[1] Inst Math Toulouse, 118 Route Narbonne, F-31062 Toulouse, France
[2] Univ Lorraine, CNRS, Inst Elie Cartan de Lorraine, UMR 7502, F-54506 Vandoeuvre Les Nancy, France
关键词
Nonlinear partial differential equations; splitting; stochastic partial differential equations; asymptotic-Preserving schemes; fractional and multifractional processes; LONG-RANGE CORRELATIONS; SCHRODINGER-EQUATION; RANDOM-MEDIA; KINETIC-EQUATIONS; TIME; LIMIT; CONVERGENCE; FIELDS;
D O I
10.1051/ps/2016023
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider a Lie splitting scheme for a nonlinear partial differential equation driven by a random time-dependent dispersion coefficient. Our main result is a uniform estimate of the error of the scheme when the time step goes to 0. Moreover, we prove that the scheme satisfies an asymptotic-preserving property. As an application, we study the order of convergence of the scheme when the dispersion coefficient approximates a (multi)fractional process.
引用
收藏
页码:572 / 589
页数:18
相关论文
共 34 条
[1]  
Agrawal G. P., 2001, NONLINEAR FIBER OPTI, V3rd
[2]   Time splitting for wave equations in random media [J].
Bal, G ;
Ryzhik, L .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2004, 38 (06) :961-987
[3]  
Bal G., 2004, COMMUN MATH SCI, V2, P515
[4]   On time-splitting spectral approximations for the Schrodinger equation in the semiclassical regime [J].
Bao, WZ ;
Jin, S ;
Markowich, PA .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 175 (02) :487-524
[5]  
Benassi A, 1997, REV MAT IBEROAM, V13, P19
[6]   Order estimates in time of splitting methods for the nonlinear Schrodinger equation [J].
Besse, C ;
Bidégaray, B ;
Descombes, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 40 (01) :26-40
[7]   AN ASYMPTOTIC PRESERVING SCHEME BASED ON A NEW FORMULATION FOR NLS IN THE SEMICLASSICAL LIMIT [J].
Besse, Christophe ;
Carles, Remi ;
Mehats, Florian .
MULTISCALE MODELING & SIMULATION, 2013, 11 (04) :1228-1260
[8]  
Billingsley P., 1968, CONVERGE PROBAB MEAS
[9]   Invariance principle, multifractional Gaussian processes and long-range dependence [J].
Cohen, Serge ;
Marty, Renaud .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2008, 44 (03) :475-489
[10]   NUMERICAL PASSAGE FROM KINETIC TO FLUID EQUATIONS [J].
CORON, F ;
PERTHAME, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1991, 28 (01) :26-42