Properties of robust M-estimators for Poisson and Negative Binomial data

被引:9
作者
Cadigan, NG [1 ]
Chen, J [1 ]
机构
[1] Univ Waterloo, Dept Stat & Actuarial Sci, Waterloo, ON N2L 3G1, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
bounded-influence M-estimation; small-sample efficiency; model misspecification;
D O I
10.1080/00949650108812122
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate robust M-estimators of location and over-dispersion for independent and identically distributed samples from Poisson and Negative Binomial (NB) distributions. We focus on asymptotic and small-sample efficiencies, outlier-induced biases, and biases caused by model mis-specification. This is important information for assessing the practical utility of the estimation method. Our results demonstrate that reasonably efficient estimation of location and over-dispersion parameters for count data is possible with samples sizes as small as n = 25. The sensitivity of these estimators to large outliers can be reduced compared to maximum likelihood estimators, especially when the amount of over-dispersion is small. We also conclude that serious biases result when using robust Poisson M-estimation with NB data, The biases are less serious when using robust NIB M-estimation with Poisson data.
引用
收藏
页码:273 / 288
页数:16
相关论文
共 19 条
[1]  
Basu A., 1997, SANKHYA INDIAN J STA, V59, P11
[2]   MINIMUM HELLINGER DISTANCE ESTIMATES FOR PARAMETRIC MODELS [J].
BERAN, R .
ANNALS OF STATISTICS, 1977, 5 (03) :445-463
[3]  
CADIGAN NG, 1999, THESIS U WATERLOO WA
[4]   UNIQUENESS AND FRECHET DIFFERENTIABILITY OF FUNCTIONAL SOLUTIONS TO MAXIMUM-LIKELIHOOD TYPE EQUATIONS [J].
CLARKE, BR .
ANNALS OF STATISTICS, 1983, 11 (04) :1196-1205
[5]  
ESLINGER PW, 1991, J STATIST COMPUT SIM, V39, P95
[6]  
EVANS GT, 1999, 9962 NAFO SCR
[7]  
Gunderson D.R., 1993, SURVEYS FISHERIES RE
[8]  
Hampel F. R., 1986, ROBUST STAT APPROACH
[9]  
Huber P. J., 1981, ROBUST STAT
[10]  
HUBER PJ, 1967, 5TH P BERK S MATH ST, V1, P221