Bayesian model selection for group studies - Revisited

被引:396
作者
Rigoux, L. [1 ]
Stephan, K. E. [2 ,3 ,4 ]
Friston, K. J. [2 ]
Daunizeau, J. [1 ,2 ]
机构
[1] Brain & Spine Inst, F-75013 Paris, France
[2] UCL, Wellcome Trust Ctr Neuroimaging, London WC1E 6BT, England
[3] Univ Zurich, Inst Biomed Engn, Translat Neuromodeling Unit, CH-8006 Zurich, Switzerland
[4] Swiss Fed Inst Technol, Zurich, Switzerland
基金
英国惠康基金; 欧洲研究理事会;
关键词
Statistical risk; Exceedance probability; Between-condition comparison; Between-group comparison; Mixed effects; Random effects; DCM; BRAIN;
D O I
10.1016/j.neuroimage.2013.08.065
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
In this paper, we revisit the problem of Bayesian model selection (BMS) at the group level. We originally addressed this issue in Stephan et al. (2009), where models are treated as random effects that could differ between subjects, with an unknown population distribution. Here, we extend this work, by (i) introducing the Bayesian omnibus risk (BOR) as a measure of the statistical risk incurred when performing group BMS, (ii) highlighting the difference between random effects BMS and classical random effects analyses of parameter estimates, and (iii) addressing the problem of between group or condition model comparisons. We address the first issue by quantifying the chance likelihood of apparent differences in model frequencies. This leads to the notion of protected exceedance probabilities. The second issue arises when people want to ask "whether a model parameter is zero or not" at the group level. Here, we provide guidance as to whether to use a classical second-level analysis of parameter estimates, or random effects BMS. The third issue rests on the evidence for a difference in model labels or frequencies across groups or conditions. Overall, we hope that the material presented in this paper finesses the problems of group-level BMS in the analysis of neuroimaging and behavioural data. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:971 / 985
页数:15
相关论文
共 32 条
[1]  
Akaike H., 1973, B INT STAT I, V50, P277
[2]  
[Anonymous], 1968, HDB MATH FUNCTIONS F
[3]  
[Anonymous], 2001, STAT INFERENCE
[4]   Preserved Feedforward But Impaired Top-Down Processes in the Vegetative State [J].
Boly, Melanie ;
Garrido, Marta Isabel ;
Gosseries, Olivia ;
Bruno, Marie-Aurelie ;
Boveroux, Pierre ;
Schnakers, Caroline ;
Massimini, Marcello ;
Litvak, Vladimir ;
Laureys, Steven ;
Friston, Karl J. .
SCIENCE, 2011, 332 (6031) :858-862
[5]   Forward and backward connections in the brain: A DCM study of functional asymmetries [J].
Chen, C. C. ;
Henson, R. N. ;
Stephan, K. E. ;
Kilner, J. M. ;
Friston, K. J. .
NEUROIMAGE, 2009, 45 (02) :453-462
[6]   Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise? [J].
Daunizeau, J. ;
Stephan, K. E. ;
Friston, K. J. .
NEUROIMAGE, 2012, 62 (01) :464-481
[7]   Dynamic causal modelling: A critical review of the biophysical and statistical foundations [J].
Daunizeau, J. ;
David, O. ;
Stephan, K. E. .
NEUROIMAGE, 2011, 58 (02) :312-322
[8]   Optimizing Experimental Design for Comparing Models of Brain Function [J].
Daunizeau, Jean ;
Preuschoff, Kerstin ;
Friston, Karl J. ;
Stephan, Klaas .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (11)
[9]   Model-Based Influences on Humans' Choices and Striatal Prediction Errors [J].
Daw, Nathaniel D. ;
Gershman, Samuel J. ;
Seymour, Ben ;
Dayan, Peter ;
Dolan, Raymond J. .
NEURON, 2011, 69 (06) :1204-1215
[10]   Striatal Prediction Error Modulates Cortical Coupling [J].
den Ouden, Hanneke E. M. ;
Daunizeau, Jean ;
Roiser, Jonathan ;
Friston, Karl J. ;
Stephan, Klaas E. .
JOURNAL OF NEUROSCIENCE, 2010, 30 (09) :3210-3219