A Novel Interacting T-S Fuzzy Multiple Model by Using UKF for Maneuvering Target Tracking

被引:0
|
作者
Li, Liang-qun [1 ]
Zhao, Da [2 ]
Luo, Cheng-da [3 ]
机构
[1] Shenzhen Univ, ATR Key Lab, Guangdong Key Lab Interlligent Informat Proc, Shenzhen, Peoples R China
[2] Shenzhen Univ, ATR Key Lab, Shenzhen, Peoples R China
[3] Unit 75833 PLA, Guangzhou, Peoples R China
来源
2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019) | 2019年
关键词
Maneuvering target tracking; T-S fuzzy model; Fuzzy C-regression model clustering; UKF; UNSCENTED KALMAN FILTER;
D O I
10.23919/fusion43075.2019.9011345
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Dynamic models of maneuvering targets in nonlinear systems are usually difficult to be modeled, and inaccurate dynamic model will lead to the poor performance of tracking algorithm. For these problems, in this paper, a novel interacting Takagi-Sugeno (T-S) fuzzy multiple model maneuvering target tracking algorithm by using UKF for parameter identification is proposed (ITS-UKF). The ITS-UKF algorithm uses multiple semantic fuzzy sets to represent the target feature information, and construct a general T-S fuzzy semantic multiple model framework In the T-S fuzzy semantic multiple model framework, the intersection degree between fuzzy sets is used to estimate the transition probabilities between different fuzzy rules; fuzzy C-regression model clustering (FCRM) is used to adaptively identify the premise parameters. Moreover, the UKF is also used to identify the consequent parameters to improve the performance for nonlinear system. Simulation results show that the performance of ITS-UKF is superior to IMM-EKF (interacting multiple model extended Kalman filter), IMM-UKF (interacting multiple model unscented Kalman filter), particularly, when the target is maneuvered or the model of the target is inaccurate, the ITS-UKF algorithm has better performance
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Interacting T-S fuzzy semantic model estimation for maneuvering target tracking
    Li, Liang-Qun
    Zhan, Xi-yang
    Xie, Wei-Xin
    Liu, Zong-Xiang
    NEUROCOMPUTING, 2021, 421 : 84 - 96
  • [2] Interacting T-S fuzzy semantic model estimation for maneuvering target tracking
    Li L.-Q.
    Zhan X.-Y.
    Xie W.-X.
    Liu Z.-X.
    Neurocomputing, 2021, 421 : 84 - 96
  • [3] Maneuvering Target Tracking using T-S Fuzzy Model of Physical Membership Function
    Meng, Lingyu
    Li, Liangqun
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2022, 47 (03) : 3889 - 3898
  • [4] Maneuvering Target Tracking using T-S Fuzzy Model of Physical Membership Function
    Lingyu Meng
    Liangqun Li
    Arabian Journal for Science and Engineering, 2022, 47 : 3889 - 3898
  • [5] A novel interacting multiple model algorithm for maneuvering target tracking
    Li, Bo (leeboo@yeah.net), 1775, ICIC Express Letters Office (07):
  • [6] Variable structure T-S fuzzy model and its application in maneuvering target tracking
    Wang, Xiao-li
    Xie, Wei-xin
    Li, Liang-qun
    FUZZY OPTIMIZATION AND DECISION MAKING, 2023, 22 (02) : 289 - 308
  • [7] Design of Fuzzy Interacting Multiple Model Algorithm for Maneuvering Target Tracking
    Kim, Hyun-Sik
    Kim, In-Soo
    Chun, Seung-Yong
    IECON 2004: 30TH ANNUAL CONFERENCE OF IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOL 3, 2004, : 2092 - 2097
  • [8] A Novel Robust Interacting Multiple Model Algorithm for Maneuvering Target Tracking
    Ghazal, Milad
    Doustmohammadi, Ali
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2017, 17 (03) : 35 - 42
  • [9] Multisensor Maneuvering Target Fusion Tracking Using Interacting Multiple Model
    Zhao, Baofeng
    AUTOMATIC CONTROL AND COMPUTER SCIENCES, 2024, 58 (03) : 303 - 312
  • [10] Strong tracking UKF adaptive interacting multiple-model algorithm based on maneuvering hypersonic-target tracking
    Dai H.
    Fang J.
    Tang L.
    Wang X.
    Zhongguo Guanxing Jishu Xuebao/Journal of Chinese Inertial Technology, 2018, 26 (03): : 338 - 345