An isogeometric boundary element method for electromagnetic scattering with compatible B-spline discretizations

被引:55
作者
Simpson, R. N. [1 ]
Liu, Z. [1 ]
Vazquez, R. [2 ,3 ]
Evans, J. A. [4 ]
机构
[1] Univ Glasgow, Sch Engn, Glasgow G12 8QQ, Lanark, Scotland
[2] Ecole Polytech Fed Lausanne, Inst Math, Stn 8, CH-1015 Lausanne, Switzerland
[3] CNR, Ist Matemat Applicata & Tecnol Informat E Magenes, I-27100 Pavia, Italy
[4] Univ Colorado, Dept Aerosp Engn Sci, Boulder, CO 80305 USA
基金
欧洲研究理事会;
关键词
Electromagnetic scattering; Compatible B-splines; Isogeometric analysis; Boundary element method; Method of moments; SHAPE OPTIMIZATION; APPROXIMATION; CONSTRUCTION; EQUATIONS; SURFACES; MATRICES;
D O I
10.1016/j.jcp.2018.01.025
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We outline the construction of compatible B-splines on 3D surfaces that satisfy the continuity requirements for electromagnetic scattering analysis with the boundary element method (method of moments). Our approach makes use of Non-Uniform Rational B-splines to represent model geometry and compatible B-splines to approximate the surface current, and adopts the isogeometric concept in which the basis for analysis is taken directly from CAD (geometry) data. The approach allows for high-order approximations and crucially provides a direct link with CAD data structures that allows for efficient design workflows. After outlining the construction of div- and curl-conforming B-splines defined over 3D surfaces we describe their use with the electric and magnetic field integral equations using a Galerkin formulation. We use Bezier extraction to accelerate the computation of NURBS and B-spline terms and employ H-matrices to provide accelerated computations and memory reduction for the dense matrices that result from the boundary integral discretization. The method is verified using the well known Mie scattering problem posed over a perfectly electrically conducting sphere and the classic NASA almond problem. Finally, we demonstrate the ability of the approach to handle models with complex geometry directly from CAD without mesh generation. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:264 / 289
页数:26
相关论文
共 41 条
[1]  
[Anonymous], 2012, Advanced Engineering Electromagnetics
[2]  
[Anonymous], 2008, HIERARCHICAL MATRICE
[3]  
ANTILLA GE, 1994, IEEE AP-S, P443, DOI 10.1109/APS.1994.407718
[4]   Boundary element based multiresolution shape optimisation in electrostatics [J].
Bandara, Kosala ;
Cirak, Fehmi ;
Of, Guenther ;
Steinbach, Olaf ;
Zapletal, Jan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 297 :584-598
[5]   Isogeometric analysis using T-splines [J].
Bazilevs, Y. ;
Calo, V. M. ;
Cottrell, J. A. ;
Evans, J. A. ;
Hughes, T. J. R. ;
Lipton, S. ;
Scott, M. A. ;
Sederberg, T. W. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :229-263
[6]  
Bebendorf M, 2000, NUMER MATH, V86, P565, DOI 10.1007/s002110000192
[7]   Wideband nested cross approximation for Helmholtz problems [J].
Bebendorf, M. ;
Kuske, C. ;
Venn, R. .
NUMERISCHE MATHEMATIK, 2015, 130 (01) :1-34
[8]   Isogeometric shell analysis: The Reissner-Mindlin shell [J].
Benson, D. J. ;
Bazilevs, Y. ;
Hsu, M. C. ;
Hughes, T. J. R. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) :276-289
[9]   Isogeometric finite element data structures based on Bezier extraction of NURBS [J].
Borden, Michael J. ;
Scott, Michael A. ;
Evans, John A. ;
Hughes, Thomas J. R. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 87 (1-5) :15-47
[10]   Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations [J].
Buffa, A. ;
Sangalli, G. ;
Vazquez, R. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 :1291-1320