On structural information similarity measurements

被引:0
作者
Wei, Jin-Mao [1 ]
Wang, Shu-Qin [1 ]
Zheng, Wei [1 ]
Wang, Jing [1 ]
You, Jun-Ping [1 ]
Zhang, Jie [1 ]
Liu, Dan [1 ]
机构
[1] Northeast Normal Univ, Inst Computat Intelligence, Changchun 130024, Jilin, Peoples R China
来源
2006 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING | 2006年
关键词
kernel methods; structural information content; structural similarity; web mining;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Measuring structural similarities is attracting more and more attention from researchers. In this paper, we define structural information content (SIC) for measuring the structural information of a structure, and introduce topological match degree to measure to what extent a subtree is matched. By recursively computing SICs and thus computing topological match degrees, we evaluate the structural information similarities of data trees to pattern tree. In the paper, we present two algorithms for recursively calculating SICs with computation complexity of O(M), and use examples to instantiate the feasibility of the proposed method.
引用
收藏
页码:124 / +
页数:2
相关论文
共 16 条
[1]  
[Anonymous], 2004, KERNEL METHOD PATTER
[2]  
[Anonymous], 2002, EFFICIENTLY MINING F, DOI DOI 10.1145/775047.775058
[3]  
ASAI T, 2003, P 6 INT C DISC SCI, P47, DOI DOI 10.1007/B14292
[4]  
Bell DA, 2003, LECT NOTES ARTIF INT, V2639, P507
[5]   A matching algorithm for measuring the structural similarity between an XML document and a DTD and its applications [J].
Bertino, E ;
Guerrini, G ;
Mesiti, M .
INFORMATION SYSTEMS, 2004, 29 (01) :23-46
[6]  
Dehaspe L., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P30
[7]  
Flesca S., 2002, P 5 INT WORKSH WEB D, P55
[8]  
Inokuchi A, 2000, LECT NOTES COMPUT<D>, V1910, P13
[9]  
JI W, 2004, LECT NOTES ARTIF INT, V3066, P602