Sufficient conditions for the regularity of the solutions of the Navier-Stokes equations

被引:0
作者
Berselli, LC [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat L Tonelli, I-56127 Pisa, Italy
关键词
Navier-Stokes equations; regularity; weak solutions;
D O I
10.1002/(SICI)1099-1476(19990910)22:13<1079::AID-MMA71>3.0.CO;2-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we find sufficient conditions, involving only the pressure, that ensure the regularity of weak solutions to the Navier-Stokes equations. Conditions involving only the pressure were previously obtained in [7, 4]. Following a remark in this last reference we improve, in particular, Kaniel's result [7]. Our condition can be seen at the light of the heuristic idea that the pressure behaves similarly to the modulus squared of the velocity. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:1079 / 1085
页数:7
相关论文
共 13 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]  
Beirao da Veiga H., 1998, EQUATIONS DERIVEES P, P127
[3]  
DAVEIGA HB, IN PRESS MATH METH A
[4]  
DEVEIGA HB, 1987, INDIANA U MATH J, V36, P149
[5]   SOLUTIONS IN LR OF THE NAVIER-STOKES INITIAL-VALUE PROBLEM [J].
GIGA, Y ;
MIYAKAWA, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1985, 89 (03) :267-281
[7]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[8]  
Lions J. L., 1969, QUELQUE METHODES RES
[9]  
Miyakawa T., 1981, Hiroshima Math. J., V11, P9
[10]  
Prodi G., 1959, ANN MAT PUR APPL, V48, P173, DOI 10.1007/BF02410664