On a trivial monodromy criterion for the Sturm-Liouville equation

被引:15
作者
Ishkin, Kh K. [1 ]
机构
[1] Bashkir State Univ, Ufa 450074, Russia
基金
俄罗斯基础研究基金会;
关键词
Sturm-Liouville equation; monodromy-free potential; meromorphic function; monodromy matrix; Sokhotskii-Plemelj formula; Gronwall inequality; Hardy class;
D O I
10.1134/S0001434613090216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a necessary and sufficient condition for the equation -y ''(z) + q(z)y(z) = lambda y(z) to be monodromy-free; here z is an element of gamma and gamma is a piecewise smooth curve which is the boundary of a convex bounded domain.
引用
收藏
页码:508 / 523
页数:16
相关论文
共 10 条
[1]  
[Anonymous], 1970, Ordinary Differential Equations
[2]   DIFFERENTIAL-EQUATIONS IN THE SPECTRAL PARAMETER [J].
DUISTERMAAT, JJ ;
GRUNBAUM, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 103 (02) :177-240
[3]  
Hartman P., 2002, ORDINARY DIFFERENTIA, V2nd edn
[4]   On the Uniqueness Criterion for Solutions of the Sturm-Liouville Equation [J].
Ishkin, Kh. K. .
MATHEMATICAL NOTES, 2008, 84 (3-4) :515-528
[5]  
Levin B. Ya., 1956, DISTRIBUTION ROOTS E
[6]  
Levitan B. M., 1988, STURM LIOUVILLE DIRA
[7]  
LYANTSE VE, 1967, MAT SBORNIK, V72, P537
[8]  
Privalov II., 1950, Boundary Properties of Analytic Functions (Russian), V2d
[9]  
Reed M, 1977, METHODS MODERN MATH, VI
[10]  
Reed Michael, 1972, Methods of Modern Mathematical Physics, V1