STRONG CONVERGENCE OF AN INERTIAL FORWARD-BACKWARD SPLITTING METHOD FOR ACCRETIVE OPERATORS IN REAL BANACH SPACE

被引:26
作者
Abass, H. A. [1 ]
Izuchukwu, C. [1 ]
Mewomo, O. T. [1 ]
Dong, Q. L. [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Comp Sci, Durban, South Africa
[2] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
来源
FIXED POINT THEORY | 2020年 / 21卷 / 02期
基金
新加坡国家研究基金会;
关键词
Monotone inclusion problem; inertial iterative algorithm; Banach space; forward-backward splitting method; inertial extrapolation; ALGORITHMS;
D O I
10.24193/fpt-ro.2020.2.28
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main purpose of this paper is to introduce a modified inertial forward-backward splitting method and prove its strong convergence to a zero of the sum of two accretive operators in real uniformly convex Banach space which is also uniformly smooth. We then apply our results to solve variational inequality problem and convex minimization problem. We also give a numerical example of our algorithm to show that it converges faster than the un-accelerated modified forward-backward algorithm.
引用
收藏
页码:397 / 412
页数:16
相关论文
共 18 条
[1]  
CHANG SS, 2010, J INEQUAL APPL, DOI DOI 10.1155/2010/869684
[2]   Inertial algorithm for approximating a common fixed point for a countable family of relatively nonexpansive maps [J].
Chidume C.E. ;
Ikechukwu S.I. ;
Adamu A. .
Fixed Point Theory and Applications, 2018 (1)
[3]  
Chidume C.E., 2009, SPRINGER VERLAG SERI
[4]  
DONG QL, 2018, OPTIM LETT, V0012, P00087, DOI DOI 10.1007/S11590-016-1102-9
[5]  
DONG QL, 2017, J FIX POINT THEORY A, V0019, P03097, DOI DOI 10.1007/S11784-017-0472-7
[6]  
KATO T, 1967, J MATH SOC JPN, V0019, P00508
[7]  
Lopez G, 2012, ABSTR APPL AN, V2012, P25
[8]  
MAINGE PE, 2008, J COMPUT APPL MATH, V0219, P00223, DOI DOI 10.1016/J.CAM.2007.07.021
[9]  
MAINGE PE, 2007, SET VALUED ANAL, V0015, P00067, DOI DOI 10.1007/S11228-006-0027-3
[10]  
MOUDAFI A, 2003, J COMPUT APPL MATH, V0155, P00447, DOI DOI 10.1016/S0377-0427(02)00906-8