A vibration analysis method based on hybrid techniques and its application to rotating machinery

被引:24
作者
Deng, Linfeng
Zhao, Rongzhen [1 ]
机构
[1] Lanzhou Univ Technol, Sch Mech & Elect Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Vibration analysis; Condition monitoring; Fault feature extraction; Local mean decomposition; Product function; Rotating machinery; LOCAL MEAN DECOMPOSITION; FAULT-DIAGNOSIS; ROTOR; MODEL; TRANSFORM;
D O I
10.1016/j.measurement.2013.07.014
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Vibration-based condition monitoring and fault diagnosis technique is a most effective approach to maintain the safe and reliable operation of rotating machinery. Unfortunately, the vibration signal always exhibits non-linear and non-stationary characteristics, which makes vibration signal analysis and fault feature extraction very difficult. To extract the significant fault features, a vibration analysis method based on hybrid techniques is proposed in this paper. Firstly, the raw signals are decomposed into a few product functions (PFs) using local mean decomposition (LMD), and meanwhile instantaneous frequency and instantaneous amplitude also are obtained. Subsequently, Fourier transform is performed on the derived PFs, and then, according to the spectra features, the useful PFs are selected to reconstruct the purified vibration signals. Lastly, several different fault features are fused to illustrate the operating state of the machinery. The experimental results show that the proposed method can accurately extract machine fault features, which proves that the combined application of LMD and other signal processing techniques is a successful scheme for the machine vibration analysis. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3671 / 3682
页数:12
相关论文
共 33 条
[1]  
Bently D.E., 2003, Fundamentals of Rotating Machinery Diagnostics
[2]   A demodulating approach based on local mean decomposition and its applications in mechanical fault diagnosis [J].
Chen, Baojia ;
He, Zhengjia ;
Chen, Xuefeng ;
Cao, Hongrui ;
Cai, Gaigai ;
Zi, Yanyang .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (05)
[3]   An order tracking technique for the gear fault diagnosis using local mean decomposition method [J].
Cheng, Junsheng ;
Zhang, Kang ;
Yang, Yu .
MECHANISM AND MACHINE THEORY, 2012, 55 :67-76
[4]   A rotating machinery fault diagnosis method based on local mean decomposition [J].
Cheng, Junsheng ;
Yang, Yi ;
Yang, Yu .
DIGITAL SIGNAL PROCESSING, 2012, 22 (02) :356-366
[5]   The envelope order spectrum based on generalized demodulation time-frequency analysis and its application to gear fault diagnosis [J].
Cheng, Junsheng ;
Yang, Yu ;
Yu, Dejie .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2010, 24 (02) :508-521
[6]   Experimental observation of nonlinear vibrations in a rub-impact rotor system [J].
Chu, FL ;
Lu, WX .
JOURNAL OF SOUND AND VIBRATION, 2005, 283 (3-5) :621-643
[7]   Experimental validation of impact energy model for the rub-impact assessment in a rotor system [J].
Cong, Feiyun ;
Chen, Jin ;
Dong, Guangming ;
Huang, Kun .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2011, 25 (07) :2549-2558
[8]   Time-frequency analysis of time-varying modulated signals based on improved energy separation by iterative generalized demodulation [J].
Feng, Zhipeng ;
Chu, Fulei ;
Zuo, Ming J. .
JOURNAL OF SOUND AND VIBRATION, 2011, 330 (06) :1225-1243
[9]   FAULT-DIAGNOSIS IN DYNAMIC-SYSTEMS USING ANALYTICAL AND KNOWLEDGE-BASED REDUNDANCY - A SURVEY AND SOME NEW RESULTS [J].
FRANK, PM .
AUTOMATICA, 1990, 26 (03) :459-474
[10]   Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble [J].
Hu, Qiao ;
He, Zhengjia ;
Zhang, Zhousuo ;
Zi, Yanyang .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2007, 21 (02) :688-705