Prospects for carbon-negative biomanufacturing

被引:31
作者
Scown, Corinne D. [1 ,2 ,3 ,4 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Biosci Area, Berkeley, CA 94720 USA
[3] Joint BioEnergy Inst, Life Cycle Econ & Agron Div, Emeryville, CA 94608 USA
[4] Univ Calif Berkeley, Energy & Biosci Inst, Berkeley, CA 94720 USA
关键词
GREENHOUSE-GAS EMISSIONS; ACID PRODUCTION; ETHYLENE-GLYCOL; PATHWAYS; PLASTICS;
D O I
10.1016/j.tibtech.2022.09.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biomanufacturing has the potential to reduce demand for petrochemicals and mitigate climate change. Recent studies have also suggested that some of these products can be net carbon negative, effectively removing CO2 from the atmosphere and locking it up in products. This review explores the magnitude of carbon removal achievable through biomanufacturing and discusses the likely fate of carbon in a range of target molecules. Solvents, cleaning agents, or food and pharmaceutical additives will likely re-release their carbon as CO2 at the end of their functional lives, while carbon incorporated into non-compostable polymers can result in long-term sequestration. Future research can maximize its impact by focusing on reducing emissions, achieving performance advantages, and enabling a more circular carbon economy.
引用
收藏
页码:1415 / 1424
页数:10
相关论文
共 82 条
[51]   A kinetic model of the central carbon metabolism for acrylic acid production in Escherichia coli [J].
Oliveira, Alexandre ;
Rodrigues, Joana ;
Ferreira, Eugenio Campos ;
Rodrigues, Ligia ;
Dias, Oscar .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (03)
[52]   Comprehensive analysis of metabolic sensitivity of 1,4-butanediol producing Escherichia coli toward substrate and oxygen availability [J].
Pooth, Viola ;
van Gaalen, Kathrin ;
Trenkamp, Sandra ;
Wiechert, Wolfgang ;
Oldiges, Marco .
BIOTECHNOLOGY PROGRESS, 2020, 36 (01)
[53]   Improvement in d-xylose utilization and isobutanol production in S. cerevisiae by adaptive laboratory evolution and rational engineering [J].
Promdonkoy, Peerada ;
Mhuantong, Wuttichai ;
Champreda, Verawat ;
Tanapongpipat, Sutipa ;
Runguphan, Weerawat .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 2020, 47 (6-7) :497-510
[54]  
Raj Kaushik, 2018, Metab Eng Commun, V6, P28, DOI 10.1016/j.meteno.2018.02.001
[55]   Biogas valorization via continuous polyhydroxybutyrate production by Methylocystis hirsuta in a bubble column bioreactor [J].
Rodriguez, Yadira ;
Milen Firmino, Paulo Igor ;
Perez, Victor ;
Lebrero, Raquel ;
Munoz, Raul .
WASTE MANAGEMENT, 2020, 113 :395-403
[56]   Sustainable manufacturing with synthetic biology [J].
Scown, Corinne D. ;
Keasling, Jay D. .
NATURE BIOTECHNOLOGY, 2022, 40 (03) :304-306
[57]   Greenhouse gas emissions of 100% bio-derived polyethylene terephthalate on its life cycle compared with petroleum-derived polyethylene terephthalate [J].
Semba, Toshiro ;
Sakai, Yuji ;
Sakanishi, Tatsuya ;
Inaba, Atsushi .
JOURNAL OF CLEANER PRODUCTION, 2018, 195 :932-938
[58]   Economic and Environmental Assessment of Succinic Acid Production from Sugarcane Bagasse [J].
Shaji, Arun ;
Shastri, Yogendra ;
Kumar, Vinod ;
Ranade, Vivek V. ;
Hindle, Neil .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (38) :12738-12746
[59]   Isobutanol production freed from biological limits using synthetic biochemistry [J].
Sherkhanov, Saken ;
Korman, Tyler P. ;
Chan, Sum ;
Faham, Salem ;
Liu, Hongjiang ;
Sawaya, Michael R. ;
Hsu, Wan-Ting ;
Vikram, Ellee ;
Cheng, Tiffany ;
Bowie, James U. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[60]   Exploring functionality of the reverse β-oxidation pathway in Corynebacterium glutamicum for production of adipic acid [J].
Shin, Jae Ho ;
Andersen, Aaron John Christian ;
Achterberg, Puck ;
Olsson, Lisbeth .
MICROBIAL CELL FACTORIES, 2021, 20 (01)