Prospects for carbon-negative biomanufacturing

被引:31
作者
Scown, Corinne D. [1 ,2 ,3 ,4 ]
机构
[1] Lawrence Berkeley Natl Lab, Energy Technol Area, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Biosci Area, Berkeley, CA 94720 USA
[3] Joint BioEnergy Inst, Life Cycle Econ & Agron Div, Emeryville, CA 94608 USA
[4] Univ Calif Berkeley, Energy & Biosci Inst, Berkeley, CA 94720 USA
关键词
GREENHOUSE-GAS EMISSIONS; ACID PRODUCTION; ETHYLENE-GLYCOL; PATHWAYS; PLASTICS;
D O I
10.1016/j.tibtech.2022.09.004
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Biomanufacturing has the potential to reduce demand for petrochemicals and mitigate climate change. Recent studies have also suggested that some of these products can be net carbon negative, effectively removing CO2 from the atmosphere and locking it up in products. This review explores the magnitude of carbon removal achievable through biomanufacturing and discusses the likely fate of carbon in a range of target molecules. Solvents, cleaning agents, or food and pharmaceutical additives will likely re-release their carbon as CO2 at the end of their functional lives, while carbon incorporated into non-compostable polymers can result in long-term sequestration. Future research can maximize its impact by focusing on reducing emissions, achieving performance advantages, and enabling a more circular carbon economy.
引用
收藏
页码:1415 / 1424
页数:10
相关论文
共 82 条
[1]   Life-Cycle Fossil Energy Consumption and Greenhouse Gas Emissions of Bioderived Chemicals and Their Conventional Counterparts [J].
Adom, Felix ;
Dunn, Jennifer B. ;
Han, Jeongwoo ;
Sather, Norm .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (24) :14624-14631
[2]   Enhanced succinic acid production by Mannheimia employing optimal malate dehydrogenase [J].
Ahn, Jung Ho ;
Seo, Hogyun ;
Park, Woojin ;
Seok, Jihye ;
Lee, Jong An ;
Kim, Won Jun ;
Kim, Gi Bae ;
Kim, Kyung-Jin ;
Lee, Sang Yup .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]   Micro-aerobic production of isobutanol with engineered Pseudomonas putida [J].
Ankenbauer, Andreas ;
Nitschel, Robert ;
Teleki, Attila ;
Mueller, Tobias ;
Favilli, Lorenzo ;
Blombach, Bastian ;
Takors, Ralf .
ENGINEERING IN LIFE SCIENCES, 2021, 21 (07) :475-488
[4]  
[Anonymous], 2018, Greenhouse Gas Emissions and Sinks: 1990-2016
[5]   Fate of Biodegradable Polymers Under Industrial Conditions for Anaerobic Digestion and Aerobic Composting of Food Waste [J].
Bandini, F. ;
Frache, A. ;
Ferrarini, A. ;
Taskin, E. ;
Cocconcelli, P. S. ;
Puglisi, Edoardo .
JOURNAL OF POLYMERS AND THE ENVIRONMENT, 2020, 28 (09) :2539-2550
[6]   Regulation of Pyruvate Formate Lyase-Deficient Klebsiella pneumoniae for Efficient 1,3-Propanediol Bioproduction [J].
Bao, Wenjing ;
Wei, Renquan ;
Liu, Xuxia ;
Dong, Shufan ;
Chen, Tianyu ;
Fu, Shuilin ;
Gong, Heng .
CURRENT MICROBIOLOGY, 2020, 77 (01) :55-61
[7]   The combined effect on initial glucose concentration and pH control strategies for acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum DSM 792 [J].
Capilla, M. ;
San-Valero, P. ;
Izquierdo, M. ;
Penya-roja, J. M. ;
Gabaldon, C. .
BIOCHEMICAL ENGINEERING JOURNAL, 2021, 167
[8]   Metabolic engineering for the production of dicarboxylic acids and diamines [J].
Chae, Tong Un ;
Ahn, Jung Ho ;
Ko, Yoo-Sung ;
Kim, Je Woong ;
Lee, Jong An ;
Lee, Eon Hui ;
Lee, Sang Yup .
METABOLIC ENGINEERING, 2020, 58 :2-16
[9]   Production of ethylene glycol from xylose by metabolically engineered Escherichia coli [J].
Chae, Tong Un ;
Choi, So Young ;
Ryu, Jae Yong ;
Lee, Sang Yup .
AICHE JOURNAL, 2018, 64 (12) :4193-4200
[10]   An orthogonal metabolic framework for one-carbon utilization [J].
Chou, Alexander ;
Lee, Seung Hwan ;
Zhu, Fayin ;
Clomburg, James M. ;
Gonzalez, Ramon .
NATURE METABOLISM, 2021, 3 (10) :1385-+