Boundary higher integrability for the gradient of distributional solutions of nonlinear systems

被引:0
作者
Giachetti, D
Schianchi, R
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider distributional solutions to the Dirichlet problem for nonlinear elliptic systems of the type {div A(x, u, Du) = div f in Omega, u - u(0) is an element of W-0(1,r)(Omega), with r less than the natural exponent p which appears in the coercivity and growth assumptions for the operator A. We prove that Du is an element of W-1,W-p(Omega) if \r - p\ is small enough.
引用
收藏
页码:175 / 184
页数:10
相关论文
共 15 条
[1]  
[Anonymous], ANN MATH STUDIES
[2]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[3]  
Federer H., 1969, GEOMETRIC MEASURE TH
[4]   On the regularity of very weak minima [J].
Giachetti, D ;
Leonetti, F ;
Schianchi, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :287-296
[5]  
GIACHETTI D, UNPUB BOUNDARY REGUL
[6]  
GIAQUINTA M, 1979, J REINE ANGEW MATH, V311, P145
[7]  
Giusti E, 1994, METODI DIRETTI NEL C
[8]   P-HARMONIC TENSORS AND QUASI-REGULAR MAPPINGS [J].
IWANIEC, T .
ANNALS OF MATHEMATICS, 1992, 136 (03) :589-624
[9]  
IWANIEC T, 1994, J REINE ANGEW MATH, V454, P143
[10]  
IWANIEC T, NONLINEAR HODGE THEO