Upper spectral bounds and a posteriori error analysis of several mixed finite element approximations for the Stokes eigenvalue problem

被引:21
作者
Yang YiDu [1 ]
Jiang Wei [2 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
[2] Xiamen Univ, Sch Phys & Mech & Elect Engn, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
the Stokes eigenvalue; conforming mixed finite elements; upper spectral bounds; a posteriori error estimates; NUMERICAL EIGENVALUES; SELF-ADJOINT; EXPANSIONS; ESTIMATORS; EQUATIONS; SCHEMES;
D O I
10.1007/s11425-013-4582-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper discusses conforming mixed finite element approximations for the Stokes eigenvalue problem. Firstly, several mixed finite element identities are proved. Based on these identities, the following new results are given: (1) It is proved that the numerical eigenvalues obtained by mini-element, P (1)-P (1) element and Q (1)-Q (1) element approximate the exact eigenvalues from above. (2) As for the P (1)-P (1), Q (1)-Q (1) and Q (1)-P (0) element eigenvalues, the asymptotically exact a posteriori error indicators are presented. (3) The reliable and efficient a posteriori error estimator proposed by Verfurth is applied to mini-element eigenfunctions. Finally, numerical experiments are carried out to verify the theoretical analysis.
引用
收藏
页码:1313 / 1330
页数:18
相关论文
共 44 条
[1]  
[Anonymous], 1984, CALCOLO, DOI 10.1007/bf02576171
[2]  
Armentano MG, 2004, ELECTRON T NUMER ANA, V17, P93
[3]   A-POSTERIORI ERROR ESTIMATES FOR FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
RHEINBOLDT, WC .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1978, 12 (10) :1597-1615
[4]  
Babuska I, 1991, HDB NUMERICAL ANAL 1, P640
[5]  
Becker R, 2001, ACT NUMERIC, V10, P1, DOI 10.1017/S0962492901000010
[6]  
BERNARDI C, 1985, MATH COMPUT, V44, P71, DOI 10.1090/S0025-5718-1985-0771031-7
[7]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[8]  
CHATELIN F, 1983, Spectral Approximations of Linear Operators
[9]  
Ciarlet P G, 1991, HDB NUMERICAL ANAL 1, P21
[10]   A posteriori error estimates for the finite element approximation of eigenvalue problems [J].
Durán, RG ;
Padra, C ;
Rodríguez, R .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (08) :1219-1229