Breakdown for the Camassa-Holm Equation Using Decay Criteria and Persistence in Weighted Spaces

被引:66
作者
Brandolese, Lorenzo [1 ]
机构
[1] Univ Lyon 1, CNRS, Inst Camille Jordan, UMR 5208, F-69622 Villeurbanne, France
关键词
SHALLOW-WATER EQUATION; WELL-POSEDNESS; UNIQUENESS PROPERTIES; WEAK SOLUTIONS; BEHAVIOR;
D O I
10.1093/imrn/rnr218
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We exhibit a sufficient condition in terms of decay at infinity of the initial data for the finite time blowup of strong solutions to the Camassa-Holm equation: a wave breaking will occur as soon as the initial data decay faster at infinity than the solitons. In the case of data decaying slower than solitons we provide persistence results for the solution in weighted L-p-spaces for a large class of moderate weights. Explicit asymptotic profiles illustrate the optimality of these results.
引用
收藏
页码:5161 / 5181
页数:21
相关论文
共 30 条
[1]   Nonuniform sampling and reconstruction in shift-invariant spaces [J].
Aldroubi, A ;
Gröchenig, K .
SIAM REVIEW, 2001, 43 (04) :585-620
[2]   Global dissipative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ANALYSIS AND APPLICATIONS, 2007, 5 (01) :1-27
[3]   Global conservative solutions of the Camassa-Holm equation [J].
Bressan, Alberto ;
Constantin, Adrian .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2007, 183 (02) :215-239
[4]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[5]  
Constantin A, 2000, COMMUN PUR APPL MATH, V53, P603
[6]   Finite propagation speed for the Camassa-Holm equation [J].
Constantin, A .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (02)
[7]   Existence of permanent and breaking waves for a shallow water equation: A geometric approach [J].
Constantin, A .
ANNALES DE L INSTITUT FOURIER, 2000, 50 (02) :321-+
[8]   Particle trajectories in solitary water waves [J].
Constantin, Adrian ;
Escher, Joachim .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 44 (03) :423-431
[9]   The Hydrodynamical Relevance of the Camassa-Holm and Degasperis-Procesi Equations [J].
Constantin, Adrian ;
Lannes, David .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 192 (01) :165-186
[10]   A note on well-posedness for Camassa-Holm equation [J].
Danchin, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 192 (02) :429-444