Quantization from an exponential distribution of infinitesimal action

被引:8
作者
Budiyono, Agung
机构
[1] Pati, 59185 Jawa Tengah
关键词
Quantization method; Statistical model; Distribution of infinitesimal action; QUANTUM-MECHANICS; SCHRODINGER-EQUATION; FISHER INFORMATION; WAVE MECHANICS; PRINCIPLE; ORIGIN; UNCERTAINTY; DERIVATION; MODEL; FLUCTUATIONS;
D O I
10.1016/j.physa.2012.09.002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A statistical model of quantization based on an exponential distribution of infinitesimal action is proposed. A trajectory which does not extremize the action along an infinitesimal short segment of path is allowed to occur with a very small probability following an exponential law. Planck's constant is argued to give the average deviation from the infinitesimal stationary action. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:307 / 313
页数:7
相关论文
共 65 条
[1]  
Adler S. L., 2004, Quantum Theory as an emergent phenomenon
[2]   HOW THE RESULT OF A MEASUREMENT OF A COMPONENT OF THE SPIN OF A SPIN-1/2 PARTICLE CAN TURN OUT TO BE 100 [J].
AHARONOV, Y ;
ALBERT, DZ ;
VAIDMAN, L .
PHYSICAL REVIEW LETTERS, 1988, 60 (14) :1351-1354
[3]  
[Anonymous], 1993, QUANTUM THEORY MOTIO, DOI DOI 10.1017/CBO9780511622687
[4]  
Bacciagaluppi G., 2007, QUANTUM MECH CROSSRO
[5]   NONLINEAR CORRECTIONS TO QUANTUM-MECHANICS FROM QUANTUM-GRAVITY [J].
BERTOLAMI, O .
PHYSICS LETTERS A, 1991, 154 (5-6) :225-229
[6]   NONLINEAR-WAVE MECHANICS [J].
BIALYNICKIBIRULA, I ;
MYCIELSKI, J .
ANNALS OF PHYSICS, 1976, 100 (1-2) :62-93
[7]   MODEL OF THE CAUSAL INTERPRETATION OF QUANTUM THEORY IN TERMS OF A FLUID WITH IRREGULAR FLUCTUATIONS [J].
BOHM, D ;
VIGIER, JP .
PHYSICAL REVIEW, 1954, 96 (01) :208-216
[8]  
BOHM D, 1952, PHYS REV, V85, P166, DOI 10.1103/PhysRev.85.166
[9]  
Bohm David, 1993, The Undivided Universe: An ontological interpretation of quantum theory
[10]   Quantization from Hamilton-Jacobi theory with a random constraint [J].
Budiyono, Agung .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2012, 391 (20) :4583-4589