Spectral Effects of Artificial Light on Plant Physiology and Secondary Metabolism: A Review

被引:282
作者
Ouzounis, Theoharis [1 ]
Rosenqvist, Eva [2 ]
Ottosen, Carl-Otto [1 ]
机构
[1] Aarhus Univ, Dept Food Sci, DK-5792 Aarslev, Denmark
[2] Univ Copenhagen, Dept Plant & Environm Sci, DK-2630 Taastrup, Denmark
关键词
light-emitting diodes; photosynthesis; chlorophyll fluorescence; phytochemicals; secondary metabolism; greenhouse horticulture; BLUE-LIGHT; EMITTING-DIODES; RED-LIGHT; SIGNAL-TRANSDUCTION; ARABIDOPSIS NPH1; GREEN LIGHT; GROWTH; PHOTOSYNTHESIS; RESPONSES; QUALITY;
D O I
10.21273/HORTSCI.50.8.1128
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
With the expeditious development of optoelectronics, the light-emitting diode (LED) technology as supplementary light has shown great advancement in protected cultivation. One of the greatest challenges for the LED as alternative light source for greenhouses and closed environments is the diversity of the way experiments are conducted that often makes results difficult to compare. In this review, we aim to give an overview of the impacts of light spectra on plant physiology and on secondary metabolism in relation to greenhouse production. We indicate the possibility of a targeted use of LEDs to shape plants morphologically, increase the amount of protective metabolites to enhance food quality and taste, and potentially trigger defense mechanisms of plants. The outcome shows a direct transfer of knowledge obtained in controlled environments to greenhouses to be difficult, as the natural light will reduce the effects of specific spectra with species or cultivar-specific differences. To use the existing high-efficiency LED units in greenhouses might be both energy saving and beneficial to plants as they contain higher blue light portion than traditional high-pressure sodium (HPS) lamps, but the design of light modules for closed environment might need to be developed in terms of dynamic light level and spectral composition during the day to secure plants with desired quality with respect to growth, postharvest performance, and specific metabolites.
引用
收藏
页码:1128 / 1135
页数:8
相关论文
共 94 条
[1]   HY4 GENE OF A-THALIANA ENCODES A PROTEIN WITH CHARACTERISTICS OF A BLUE-LIGHT PHOTORECEPTOR [J].
AHMAD, M ;
CASHMORE, AR .
NATURE, 1993, 366 (6451) :162-166
[2]  
[Anonymous], 2010, ANN PLANT REV
[3]   ENHANCEMENT OF THE STOMATAL RESPONSE TO BLUE-LIGHT BY RED-LIGHT, REDUCED INTERCELLULAR CONCENTRATIONS OF CO2, AND LOW VAPOR-PRESSURE DIFFERENCES [J].
ASSMANN, SM .
PLANT PHYSIOLOGY, 1988, 87 (01) :226-231
[4]   The signaling state of Arabidopsis cryptochrome 2 contains flavin semiquinone [J].
Banerjee, Roopa ;
Schleicher, Erik ;
Meier, Stefan ;
Viana, Rafael Munoz ;
Pokorny, Richard ;
Ahmad, Margaret ;
Bittl, Robert ;
Batschauer, Alfred .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (20) :14916-14922
[5]   SECONDARY METABOLITES IN PLANT DEFENSE-MECHANISMS [J].
BENNETT, RN ;
WALLSGROVE, RM .
NEW PHYTOLOGIST, 1994, 127 (04) :617-633
[6]   Phototropins But Not Cryptochromes Mediate the Blue Light-Specific Promotion of Stomatal Conductance, While Both Enhance Photosynthesis and Transpiration under Full Sunlight [J].
Boccalandro, Hernan E. ;
Giordano, Carla V. ;
Ploschuk, Edmundo L. ;
Piccoli, Patricia N. ;
Bottini, Ruben ;
Casal, Jorge J. .
PLANT PHYSIOLOGY, 2012, 158 (03) :1475-1484
[7]   Cryptochrome blue light photoreceptors are activated through interconversion of flavin redox states [J].
Bouly, Jean-Pierre ;
Schleicher, Erik ;
Dionisio-Sese, Maribel ;
Vandenbussche, Fillip ;
Van Der Straeten, Dominique ;
Bakrim, Nadia ;
Meier, Stefan ;
Batschauer, Alfred ;
Galland, Paul ;
Bittl, Robert ;
Ahmad, Margaret .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (13) :9383-9391
[8]   An Introduction to Light-emitting Diodes [J].
Bourget, C. Michael .
HORTSCIENCE, 2008, 43 (07) :1944-1946
[9]   Blue-light photoreceptors in higher plants [J].
Briggs, WR ;
Huala, E .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 1999, 15 :33-62
[10]   Do changes in light direction affect absorption profiles in leaves? [J].
Brodersen, Craig R. ;
Vogelmann, Thomas C. .
FUNCTIONAL PLANT BIOLOGY, 2010, 37 (05) :403-412