Fast-moving finite and infinite trains of solitons for nonlinear Schrodinger equations

被引:11
作者
Le Coz, Stefan [1 ]
Li, Dong [2 ,3 ]
Tsai, Tai-Peng [2 ]
机构
[1] Univ Toulouse 3, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[3] Inst Adv Study, Princeton, NJ 08544 USA
基金
加拿大自然科学与工程研究理事会;
关键词
soliton train; multi-soliton solution; multi-kink solution; nonlinear Schrodinger equation; STABILITY;
D O I
10.1017/S030821051500030X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study infinite soliton trains solutions of nonlinear Schrodinger equations, i.e. solutions behaving as the sum of infinitely many solitary waves at large time. Assuming the composing solitons have sufficiently large relative speeds, we prove the existence and uniqueness of such a soliton train. We also give a new construction of multi-solitons (i.e. finite trains) and prove uniqueness in an exponentially small neighbourhood, and we consider the case of solutions composed of several solitons and kinks (i.e. solutions with a non-zero background at infinity).
引用
收藏
页码:1251 / 1282
页数:32
相关论文
共 24 条
[1]  
[Anonymous], 2003, COURANT LECT NOTES M
[2]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[3]  
Berezin F. A, 1991, MATH ITS APPL SOVIET, V66
[4]   STABILITY IN THE ENERGY SPACE FOR CHAINS OF SOLITONS OF THE ONE-DIMENSIONAL GROSS-PITAEVSKII EQUATION [J].
Bethuel, Fabrice ;
Gravejat, Philippe ;
Smets, Didier .
ANNALES DE L INSTITUT FOURIER, 2014, 64 (01) :19-70
[5]   Travelling waves for the nonlinear Schrodinger equation with general nonlinearity in dimension one [J].
Chiron, D. .
NONLINEARITY, 2012, 25 (03) :813-850
[6]   MULTI-EXISTENCE OF MULTI-SOLITONS FOR THE SUPERCRITICAL NONLINEAR SCHRODINGER EQUATION IN ONE DIMENSION [J].
Combet, Vianney .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (05) :1961-1993
[7]   High-speed excited multi-solitons in nonlinear Schrodinger equations [J].
Cote, Raphael ;
Le Coz, Stefan .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 96 (02) :135-166
[8]   Construction of multi-soliton solutions for the L2-supercritical gKdV and NLS equations [J].
Cote, Raphael ;
Martel, Yvan ;
Merle, Frank .
REVISTA MATEMATICA IBEROAMERICANA, 2011, 27 (01) :273-302
[9]  
Duyckaerts T, 2013, CAMB J MATH, V1, P75
[10]   SMOOTHING PROPERTIES AND RETARDED ESTIMATES FOR SOME DISPERSIVE EVOLUTION-EQUATIONS [J].
GINIBRE, J ;
VELO, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (01) :163-188