Inkjet-Printed Flexible MEMS Switches for Phased-Array Antennas

被引:7
作者
Monne, Mahmuda Akter [1 ]
Lan, Xing [2 ]
Zhang, Chunbo [2 ]
Chen, Maggie Yihong [1 ]
机构
[1] Texas State Univ, Ingram Sch Engn, San Marcos, TX 78666 USA
[2] Northrop Grumman, One Space Pk, Redondo Beach, CA 90278 USA
关键词
Microstrip antennas - Microwave antennas - Conducting polymers - Ink jet printing - Silver nanoparticles - Ink - Electric switches - Polyimides;
D O I
10.1155/2018/4517848
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a fully inkjet-printed flexible MEMS switch for phased-array antennas. The physical structure of the printed MEMS switch consists of an anchor with a clamp-clamp beam, a sacrificial layer, and bottom transmission lines. 5-mil Kapton (R) polyimide film is used as a flexible substrate material. Two different types of conductive ink PEDOT : PSS from Sigma Aldrich and silver nanoparticle ink from NovaCentrix are used for the fabrication of different printed layers. Layer-by-layer fabrication process and material evaluation are illustrated. Layer characterization is done with respect to critical thickness and resistance using 2D/3D material analysis. Fujifilm Dimatix Material Printer (DMP-2800) is used for fabrication, and KLA-Tencor (P-7) profiler is used for 2D and 3D analysis of each layer. The MEMS switch has a low actuation voltage of 1.2 V, current capacity of 0.2195 mA, a current on-off ratio of 2195 : 1, and an RF insertion loss of 5 dB up to 13.5 GHz. Printed MEMS switch technology is a promising candidate for flexible and reconfigurable phased-array antennas and other radio frequency (RF) and microwave frequency applications.
引用
收藏
页数:10
相关论文
共 22 条
[1]  
Aldrich S., 2012, JETTING INSTRUCTIONS
[2]   Conformal Ink-Jet Printed C-Band Phased-Array Antenna Incorporating Carbon Nanotube Field-Effect Transistor Based Reconfigurable True-Time Delay Lines [J].
Chen, Maggie Yihong ;
Pham, Daniel ;
Subbaraman, Harish ;
Lu, Xuejun ;
Chen, Ray T. .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2012, 60 (01) :179-184
[3]   A High-Speed Inkjet-Printed Microelectromechanical Relay With a Mechanically Enhanced Double-Clamped Channel-Beam [J].
Chung, Seungjun ;
Ahosan, Muhammed ;
Karim, Ul ;
Kwon, Hyuk-Jun ;
Scheideler, William ;
Subramanian, Vivek .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (01) :95-101
[4]  
Dupont, 2016, DUP KAPT HN POL FILM
[5]   Extraordinary mobility in semiconducting carbon nanotubes [J].
Durkop, T ;
Getty, SA ;
Cobas, E ;
Fuhrer, MS .
NANO LETTERS, 2004, 4 (01) :35-39
[6]   Direct ink-jet printing of Ag-Cu nanoparticle and Ag-precursor based electrodes for OFET applications [J].
Gamerith, Stefan ;
Klug, Andreas ;
Scheiber, Horst ;
Scherf, Ullrich ;
Moderegger, Erik ;
List, Emit J. W. .
ADVANCED FUNCTIONAL MATERIALS, 2007, 17 (16) :3111-3118
[7]   Technologies for Printing Sensors and Electronics Over Large Flexible Substrates: A Review [J].
Khan, Saleem ;
Lorenzelli, Leandro ;
Dahiya, Ravinder S. .
IEEE SENSORS JOURNAL, 2015, 15 (06) :3164-3185
[8]  
Le HP, 1998, J IMAGING SCI TECHN, V42, P49
[9]   Direct-write vapor sensors on FR4 plastic substrates [J].
Marinov, Valery R. ;
Atanasov, Yuriy A. ;
Khan, Adeyl ;
Vaselaar, Dustin ;
Halvorsen, Aaron ;
Schulz, Douglas L. ;
Chrisey, Douglas B. .
IEEE SENSORS JOURNAL, 2007, 7 (5-6) :937-944
[10]   Inkjet Printed Graphene-based Field-effect Transistors on Flexible Substrate [J].
Monne, Mahmuda Akter ;
Enuka, Evarestus ;
Wang, Zhuo ;
Chen, Maggie Yihong .
LOW-DIMENSIONAL MATERIALS AND DEVICES 2017, 2017, 10349