Synthesis of Pyridyl-based Ionic Liguid Supported Ruthenium Complex and Kinetics of Ring-opening Metathesis Polymerization in Ionic Liguid

被引:0
作者
Xie Mei-Ran [1 ]
Ma Zhuo [1 ]
Han Hui-Jing [1 ]
Shi Jia-Xin [1 ]
Wang Wei-Zhen [1 ]
Li Jin-Xin [1 ]
Zhang Yi-Qun [1 ]
机构
[1] E China Normal Univ, Dept Chem, Shanghai 200062, Peoples R China
来源
CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE | 2009年 / 30卷 / 02期
关键词
Ring-opening metathesis polymerization (ROMP); Pyridyl-based ligand; Ionic liquid-supported ruthenium catalyst; Polar cycloolefin; Polymerization kinetics; OLEFIN METATHESIS; CATALYST; PARTICLES; ROMP;
D O I
暂无
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ring-opening metathesis polymerization (ROMP) is a widespread tool to synthesize well-defined and highly functionalized polymers. The catalyst is a key factor which affects the Polymerization behavior. The Grubbs' catalysts have good solubility in non-polar solvents such as CH2Cl2, benzene, THF, and toluene, but their solubility in polar solvents Such as alcohol, acetone, and ionic liquid IS Usually very poor, which limited their application for ROMP in polar solvents. In this paper, the pyridyl-based imidazolium salt-supported ruthenium catalyst was synthesized and Its use in polymerization of polar cyclooctene derivative in Ionic liquid [BMIm]BF4 was investigated. The novel pyridyl-based ligand 2,3-dimethyl-1-[6-(4-pyridyloxy) hexyl] imidazol-1-ium hexafluorophosphate was first synthesized, and then the pyridyl ligand coordinated with the second generation Grubbs catalyst to generate the imidazolium salt-supported ruthenium catalyst. The characterizations of the synthesized compounds, the ligand, and the catalyst were undertaken by NMR analyses. In H-1 NMR spectroscopy, the signal of the benzylidene proton shifted from delta(H), 19.2 in the second generation Grubbs catalyst upfield to delta(H), 18.6 in the novel catalyst, which meant the ligand exchange had occurred successfully and the novel catalyst formed indeed. The novel imidazolium salt-supported ruthenium catalyst is soluable in CH2Cl2, alcohol, acetone, and ionic liquid, thus, ROMP in pure ionic liquid could be carried out. ROMP of the polar monomer 5-hydroxyl-1-cyclooctene was explored in ionic liquid [BMIm] BF4. The polymerizations of the monomer performed conveniently under varied reaction conditions, and the conversion of monomer reached to more than 95%. The results also proved that the ionic liquid of [BMIm] BF4 without group of methyl (-CH3) in 2-position couldn't result in the poisoning of Grubs' catalyst, and had no influence on the activity of the catalyst. GPC measurement showed the polymer had controlled molecular weight and relatively low molecular weight distribution with polydispersity index of around 1.5. The kinetics of ROMP of the monomer catalyzed by the imidazolium salt-supported ruthenium catalyst in [BMIm] BF4 were measured. The plots of In {[M](0)/[M]} versus reaction time and M-n versus [M]/[I] were found to be linear in ionic liquid, and the results, showed the polymerization was conducted with controlled/living characteristics. The reaction kinetic equation and reaction active energy for the polymerization process in ionic liquid were also determined, and the results demonstrated the Polymerization followed first-order kinetics.
引用
收藏
页码:396 / 402
页数:7
相关论文
共 18 条
[1]   An ionic liquid-supported ruthenium carbene complex: A robust and recyclable catalyst for ring-closing olefin metathesis in ionic liquids [J].
Audic, N ;
Clavier, H ;
Mauduit, M ;
Guillemin, JC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (31) :9248-9249
[2]   Mechanism-based design of a ROMP catalyst for sequence-selective copolymerization [J].
Bornand, M ;
Chen, P .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (48) :7909-7911
[3]   Amphiphilic ruthenium benzylidene metathesis catalyst with PEG-substituted pyridine ligands [J].
Breitenkamp, K ;
Emrick, T .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2005, 43 (22) :5715-5721
[4]   Self-inhibition of propagating carbenes in ROMP of 7-oxa-bicyclo[2.2,1]hept-2-ene-5,6-dicarboxylic acid dendritic diesters initiated with Ru(=CHPh)Cl2(PCy3)( 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) [J].
Buchowicz, W ;
Holerca, MN ;
Percec, V .
MACROMOLECULES, 2001, 34 (12) :3842-3848
[5]   Side-chain functionalized polymers containing bipyridine coordination sites: Polymerization and metal-coordination studies [J].
Carlise, JR ;
Weck, M .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (12) :2973-2984
[6]   Synthesis of polybutadiene-based particles via dispersion ring-opening metathesis polymerization [J].
Chemtob, A ;
Héroguez, V ;
Gnanou, Y .
JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (05) :1154-1163
[7]   Ionophilic phosphines: Versatile ligands for ionic liquid biphasic catalysis [J].
Consorti, Crestina S. ;
Aydos, Guilherme L. P. ;
Ebeling, Gunter ;
Dupont, Jaiertton .
ORGANIC LETTERS, 2008, 10 (02) :237-240
[8]  
Dang JY, 2008, ACTA POLYM SIN, P343
[9]  
Du C, 2007, CHEM J CHINESE U, V28, P2018
[10]   A neutral, water-soluble olefin metathesis catalyst based on an N-heterocyclic carbene ligand [J].
Gallivan, JP ;
Jordan, JP ;
Grubbs, RH .
TETRAHEDRON LETTERS, 2005, 46 (15) :2577-2580