Gaussian-response correlation filter for robust visual object tracking

被引:34
作者
Moorthy, Sathishkumar [1 ]
Choi, Jin Young [2 ]
Joo, Young Hoon [1 ]
机构
[1] Kunsan Natl Univ, Sch IT Informat & Control Engn, 588 Daehak Ro, Gunsan Si 54150, Jeonbuk, South Korea
[2] Seoul Natl Univ, Dept Elect & Comp Engn, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Object tracking; Correlation filter; Partial occlusion; Scale variation; Online learning; NETWORK;
D O I
10.1016/j.neucom.2020.06.016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel correlation filter-based tracking method for robust visual object tracking in the presence of partial occlusion, large-scale variation and model drift. To do this, first, we develop a correlation filter for predicting the target location based on the distribution of correlation response. In this formulation, the correlation response of the target image follows Gaussian distribution to estimate the target location efficiently. Second, the constraints are derived using kernel ridge regression to mitigate the target failure in object tracking. Third, we propose an adaptive scale estimation method to detect the target scale changes during the tracking. In addition, two feature integration is elaborately designed to improve the discriminative strength of the correlation filter. Finally, extensive experimental results on OTB2013, OTB2015, TempleColor128 and UAV123 datasets demonstrate that the proposed method performs favourably against several state-of-the-art methods. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 59 条
[1]  
[Anonymous], 2006, Proceedings of the British Machine Vision Conference
[2]   Support vector tracking [J].
Avidan, S .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2004, 26 (08) :1064-1072
[3]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[4]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[5]   Real-time and robust object tracking in video via low-rank coherency analysis in feature space [J].
Chen, Chenglizhao ;
Li, Shuai ;
Qin, Hong ;
Hao, Aimin .
PATTERN RECOGNITION, 2015, 48 (09) :2885-2905
[6]   Deep learning in video multi-object tracking: A survey [J].
Ciaparrone, Gioele ;
Luque Sanchez, Francisco ;
Tabik, Siham ;
Troiano, Luigi ;
Tagliaferri, Roberto ;
Herrera, Francisco .
NEUROCOMPUTING, 2020, 381 :61-88
[7]   Kernel-based object tracking [J].
Comaniciu, D ;
Ramesh, V ;
Meer, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (05) :564-577
[8]  
Danelljan M., 2014, P 2014 BRIT MACH VIS, P1
[9]   Learning Spatially Regularized Correlation Filters for Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4310-4318
[10]   Convolutional Features for Correlation Filter Based Visual Tracking [J].
Danelljan, Martin ;
Hager, Gustav ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, :621-629