Rigid Steiner Triple Systems Obtained from Projective Triple Systems

被引:0
作者
Grannell, M. J. [1 ]
Knor, M. [2 ]
机构
[1] Open Univ, Dept Math & Stat, Milton Keynes MK7 6AA, Bucks, England
[2] Slovak Univ Technol Bratislava, Fac Civil Engn, Dept Math, Bratislava 81368, Slovakia
关键词
automorphism; Pasch configuration; projective triple system; rigid system; Steiner triple system; trade;
D O I
10.1002/jcd.21357
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It was shown by Babai in 1980 that almost all Steiner triple systems are rigid; that is, their only automorphism is the identity permutation. Those Steiner triple systems with the largest automorphism groups are the projective systems of orders 2n-1. In this paper, we show that each such projective system may be transformed to a rigid Steiner triple system by at most n Pasch trades whenever n4.
引用
收藏
页码:279 / 290
页数:12
相关论文
共 50 条
  • [21] ENUMERATION OF STEINER TRIPLE SYSTEMS WITH SUBSYSTEMS
    Kaski, Petteri
    Ostergard, Patric R. J.
    Popa, Alexandru
    MATHEMATICS OF COMPUTATION, 2015, 84 (296) : 3051 - 3067
  • [22] Cancellative hypergraphs and Steiner triple systems
    Liu, Xizhi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 167 : 303 - 337
  • [23] Automorphism groups of Steiner triple systems
    Doyen, Jean
    Kantor, William M.
    ALGEBRAIC COMBINATORICS, 2022, 5 (04): : 593 - 608
  • [24] Further 6-sparse Steiner Triple Systems
    Forbes, A. D.
    Grannell, M. J.
    Griggs, T. S.
    GRAPHS AND COMBINATORICS, 2009, 25 (01) : 49 - 64
  • [25] Large Sets of Mutually Almost Disjoint Steiner Triple Systems Not from Steiner Quadruple Systems
    Franek F.
    Rosa A.
    Griggs T.S.
    Designs, Codes and Cryptography, 1997, 12 (1) : 59 - 67
  • [26] The Cyclically Resolvable Steiner Triple Systems of Order 57
    Topalova, Svetlana
    Zhelezova, Stela
    MATHEMATICS, 2025, 13 (02)
  • [27] Further 6-sparse Steiner Triple Systems
    A. D. Forbes
    M. J. Grannell
    T. S. Griggs
    Graphs and Combinatorics, 2009, 25 : 49 - 64
  • [28] The Chromatic Index of Projective Triple Systems
    Meszka, Mariusz
    JOURNAL OF COMBINATORIAL DESIGNS, 2013, 21 (11) : 531 - 540
  • [29] From Squashed 6-Cycles to Steiner Triple Systems
    Lindner, Charles C.
    Meszka, Mariusz
    Rosa, Alexander
    JOURNAL OF COMBINATORIAL DESIGNS, 2014, 22 (05) : 189 - 195
  • [30] Maximum genus embeddings of Steiner triple systems
    Grannell, MJ
    Griggs, TS
    Sirán, J
    EUROPEAN JOURNAL OF COMBINATORICS, 2005, 26 (3-4) : 401 - 416