Clustering of regional HDI data using Self-Organizing Maps

被引:0
作者
Ferreira Costa, Jose Alfredo [1 ]
Vieira Pinto, Antonio Paulo [2 ]
de Andrade, Joao Ribeiro [2 ]
de Medeiros, Marcial Guerra [1 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Elect Engn, Natal, RN, Brazil
[2] Univ Fed Rio Grande do Norte, Prod Engn Program, Natal, RN, Brazil
来源
2017 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI) | 2017年
关键词
Data mining; human development index; Self-Organizing Maps (SOM); clustering; PATTERNS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Municipal Human Development Index (HDI) was established by the United Nations Development Program. It uses data from longevity, education, and income to infer regional social and economic life quality. This work developed a multivariate analysis of the HDI data evolution in years 1991, 2000 and 2010 of 167 municipalities in Rio Grande do Norte State, northeast Brazil. Self-organizing (Kohonen or SOM) maps were used to perform clustering and data visualization. The approach uses map segmentation with k-means algorithm after SOM training. Transition analysis from municipalities in different studied years are performed, presenting ranking of clusters in terms of the three main HDI dimensions. Five groups of municipalities resulted from intragroup similarities and intergroup dissimilarities in each period. The segmented maps present similar municipalities. Thematic maps of the region after data clustering are also shown.
引用
收藏
页数:6
相关论文
共 19 条
[1]  
Anand S., 2000, Journal of Human Development, V1, P83, DOI DOI 10.1080/14649880050008782
[2]  
[Anonymous], 1990, HUM DEV REP 1990
[3]   Self-organizing maps as an approach to exploring spatiotemporal diffusion patterns [J].
Augustijn, Ellen-Wien ;
Zurita-Milla, Raul .
INTERNATIONAL JOURNAL OF HEALTH GEOGRAPHICS, 2013, 12
[4]  
Costa JAF, 2001, PROC SPIE, V4384, P16, DOI 10.1117/12.421088
[5]  
de OliveiraM.G. a., 2012, Proceedings of 13th Brazilian Symposium on GeoInformatics, P108
[6]   An unsupervised method of classifying remotely sensed images using Kohonen self-organizing maps and agglomerative hierarchical clustering methods [J].
Goncalves, M. L. ;
Netto, M. L. A. ;
Costa, J. A. F. ;
Zullo Junior, J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (11) :3171-3207
[7]   Hierarchical self-organizing maps for clustering spatiotemporal data [J].
Hagenauer, Julian ;
Helbich, Marco .
INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE, 2013, 27 (10) :2026-2042
[8]  
Hagerty M.R, 2013, MULTIVARIATE DATA AN
[9]  
Henriques R, CLUSTERING TRAJECTOR
[10]   Data clustering: 50 years beyond K-means [J].
Jain, Anil K. .
PATTERN RECOGNITION LETTERS, 2010, 31 (08) :651-666