Simultaneous Image Annotation and Geo-Tag Prediction via Correlation Guided Multi-Task Learning

被引:3
|
作者
Wang, Hua [1 ]
Joshi, Dhiraj [2 ]
Luo, Jiebo [3 ]
Huang, Heng [4 ]
Park, Minwoo [2 ]
机构
[1] Colorado Sch Mines, Dept Elect Engn & Comp Sci, Golden, CO 80401 USA
[2] Eastman Kodak Co, Kodak Res Labs, Rochester, NY 14650 USA
[3] Univ Rochester, Dept Comp Sci, Rochester, NY 14627 USA
[4] Univ Texas, Dept Comp Sci & Engn, Arlington, TX 76019 USA
来源
2012 IEEE INTERNATIONAL SYMPOSIUM ON MULTIMEDIA (ISM) | 2012年
关键词
geotag; multi-task learning; feature selection; REGRESSION; SELECTION;
D O I
10.1109/ISM.2012.21
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In recent years, several methods have been proposed to exploit image context (such as location) that provides valuable cues complementary to the image content, i.e., image annotations and geotags have been shown to assist the prediction of each other. To exploit the useful interrelatedness between these two heterogeneous prediction tasks, we propose a new correlation guided structured sparse multi-task learning method. We utilize a joint classification and regression model to identify annotation-informative and geotag-relevant image features. We also introduce the tree-structured sparsity regularizations into multi-task learning to integrate the label correlations in multi-label image annotation. Finally we derive an efficient algorithm to optimize our non-smooth objective function. We demonstrate the performance of our method on three real-world geotagged multi-label image data sets for both semantic annotation and geotag prediction.
引用
收藏
页码:69 / 72
页数:4
相关论文
共 50 条
  • [31] A multi-modal fusion framework based on multi-task correlation learning for cancer prognosis prediction
    Tan, Kaiwen
    Huang, Weixian
    Liu, Xiaofeng
    Hu, Jinlong
    Dong, Shoubin
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2022, 126
  • [32] Drug sensitivity prediction framework using ensemble and multi-task learning
    Sharma, Aman
    Rani, Rinkle
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2020, 11 (06) : 1231 - 1240
  • [33] Multi-Task Learning Using Task Dependencies for Face Attributes Prediction
    Fan, Di
    Kim, Hyunwoo
    Kim, Junmo
    Liu, Yunhui
    Huang, Qiang
    APPLIED SCIENCES-BASEL, 2019, 9 (12):
  • [34] Multi-task Supervised Learning via Cross-learning
    Cervino, Juan
    Andres Bazerque, Juan
    Calvo-Fullana, Miguel
    Ribeiro, Alejandro
    29TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO 2021), 2021, : 1381 - 1385
  • [35] Multi-task Fundus Image Quality Assessment via Transfer Learning and Landmarks Detection
    Shen, Yaxin
    Fang, Ruogu
    Sheng, Bin
    Dai, Ling
    Li, Huating
    Qin, Jing
    Wu, Qiang
    Jia, Weiping
    MACHINE LEARNING IN MEDICAL IMAGING: 9TH INTERNATIONAL WORKSHOP, MLMI 2018, 2018, 11046 : 28 - 36
  • [36] Water Quality Prediction Based on Multi-Task Learning
    Wu, Huan
    Cheng, Shuiping
    Xin, Kunlun
    Ma, Nian
    Chen, Jie
    Tao, Liang
    Gao, Min
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2022, 19 (15)
  • [37] Pallet Recognition with Multi-Task Learning for Automated Guided Vehicles
    Mok, Chunghyup
    Baek, Insung
    Cho, Yoon Sang
    Kim, Younghoon
    Kim, Seoung Bum
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [38] Constructing negative samples via entity prediction for multi-task knowledge representation learning
    Chen, Guihai
    Wu, Jianshe
    Luo, Wenyun
    Ding, Jingyi
    KNOWLEDGE-BASED SYSTEMS, 2023, 281
  • [39] Multi-population genomic prediction using a multi-task Bayesian learning model
    Chen, Liuhong
    Li, Changxi
    Miller, Stephen
    Schenkel, Flavio
    BMC GENETICS, 2014, 15
  • [40] Simultaneous Estimation of Dish Locations and Calories with Multi-Task Learning
    Ege, Takumi
    Yanai, Keiji
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2019, E102D (07) : 1240 - 1246